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The need to elicit public opinion about predefined topics is widespread in the 

social sciences, government and business. Traditional survey-based methods are 

being partly replaced by social media data mining but their potential and 

limitations are poorly understood. This article investigates this issue by 

introducing and critically evaluating a systematic social media analytics strategy 

to gain insights about a topic from YouTube. The results of an investigation into 

sets of dance style videos show that it is possible to identify plausible patterns of 

subtopic difference, gender and sentiment. The analysis also points to the generic 

limitations of social media analytics that derive from their fundamentally 

exploratory multi-method nature. 
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Introduction 

Questionnaires, interviews and focus groups are standard social science and market 

research methods for eliciting opinions from the public, service users or other specific 

groups. In industry, mining social media for opinions expressed in public seems to be 

standard practice with commercial social media analytics software suites that include an 

eclectic mix of data mining tools (e.g., Fan & Gordon, 2014). Within academia, there is 

also a drive to generate effective methods to mine the social web (Stieglitz, Dang-Xuan, 

Bruns, & Neuberger, 2014). From a research methods perspective, there is a need to 

investigate the generic limitations of new methodological approaches. 

Many existing social research techniques have been adapted for the web, such as 

content analysis (Henrich & Holmes, 2011), ethnography (Hine, 2000), surveys (Crick, 

2012; Harrison, Wilding, Bowman, Fuller, Nicholls, et al. 2016; Tijdens & Steinmetz, 

2016), or network analysis (Ackland & Gibson, 2013; Corley, Cook, Mikler, & Singh, 

2010). Some quantitative methods focus on counting web activities, such as tweets, 

retweets hashtags, keywords, or YouTube video comments, and use these for analyses 

of the levels of interest in a topic or set of resources (Bruns & Stieglitz, 2012; Sugimoto 

& Thelwall, 2013), or for a time series analysis of trends in interest (Bruns & Stieglitz, 

2013; Stieglitz & Krüger, 2011; Thelwall, 2007). In contrast, the computational 

approach uses algorithms to generate new insights (Giglietto, Rossi, & Bennato, 2012). 

Examples include community detection based upon connections between users or 

resources (Jürgens, 2012), and automatic categorisation (Bouman, Drossaert, & 

Pieterse, 2012), with sentiment polarity being the most common example (Thelwall, 

Buckley, & Paltoglou, 2011). Using natural language processing techniques, it may also 

be possible to extract highly specific information, such as the symptoms of illegal drug 
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use at specific dosage levels (Chary, Park, McKenzie, Sun, Manini, & Genes, 2014). 

Theoretical analyses may also use an analytic approach (e.g., Dynel, 2014). 

An alternative strategy, social media analytics (Stieglitz, Dang-Xuan, Bruns, & 

Neuberger, 2014), combines different methods to generate insights, such as, “sentiment 

analysis, topic modeling, social network analysis, trend analysis etc.” (Fan & Gordon, 

2014). This extensive method triangulation and the ability to study a phenomenon 

dynamically (Edwards, Housley, Williams, Sloan, & Williams, 2013) partially offset the 

low sampling validity of social web data by merging different types of information 

(e.g., comments, likes, hit counts) to look for deeper insights. Although social media 

analytics software has been developed to enable the user to explore their data in 

multiple different ways (Burnap, Rana, Williams, Housley, Edwards, et al., 2015), 

combined methods or at least guiding frameworks are needed to help researchers to 

select and evaluate appropriate analysis strategies.  

YouTube is a logical free source of social web data because it has been world’s 

second or third most popular website since October 2007 according to Alexa.com
2
, and 

is already exploited by commercial organisations (Fan & Gordon, 2014). Twitter is 

analysed more in academic publications (e.g., Pak & Paroubek, 2010) but  is limited by 

the presence of spam and bots, and restrictions on free data collection. The multiple 

purposes for YouTube and its international and inter-generational audiences make it a 

potentially valuable source of information about the act of watching videos, the issues 

depicted in them and their uses and gratifications. 

YouTube has been investigated for the accuracy of videos about important 

topics (Briones, Nan, Madden, & Waks, 2012), its communication value (Lewis, Heath, 

Sornberger, & Arbuthnott, 2012), the content of a small themed set of videos (Jaspal, 

Turner, & Nerlich, 2014) and for the system itself (Thelwall, Sud, & Vis, 2012). There 

are also analyses of topics on YouTube that use a single primary method, such as 

content analysis (e.g., Desai, Shariff, Dhingra, Minhas, Eure, & Kats, 2013; Smith, 

Fischer, & Yongjian, 2012). 

There are a few published general purpose social media analytics strategies as 

well as discussions of the advantages of combining methods (e.g., Lünich, Rössler, & 

Hautzer, 2012). The Vista method exploits time series visualisations to track changes in 

sentiment, username mentions and keyword frequency over time for an event on 

Twitter, allowing explorations of subtopics through deeper queries of the data (Hoeber, 

Hoeber, El Meseery, Odoh, & Gopi, 2016). A YouTube-specific general purpose 

method analysed the success of six anti-smoking videos through their manually filtered 

comments, various metrics (e.g., views, Likes), networks of interactions between 

commenters, automatically detected comment sentiment and a manual content analysis. 

These were combined to produce an evidence-based evaluation of the success of the 

campaign (Chung, 2015).  

Finally, and most importantly, social media analytics methods have the 

following generic problems. 

 They are lengthy to describe because they involve multiple methods. This makes 

them difficult to learn and fully evaluate. It also makes them an awkward object 

of academic research. 
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 Generic social media analytics method are complex since they involve a 

combination of automatic processing and human judgements (e.g., to filter out 

spam) as well as analytical decisions that are specific to any given topic. 

 Given a large textual dataset, there are many different methods that could 

reasonably be used to analyse it. For example, topic modelling is a common 

approach not used here. There are also many available variations of the core 

methods – such as the different inter-document distance metrics that could be 

used within network diagrams. A researcher must therefore make a pragmatic 

decision to limit the number of analyses carried out and the variations to be 

explored. This contrasts greatly with simple numerical datasets and defined 

problems, where there may be a single best analysis (e.g., paired t-test). 

 Any method is difficult to effectively evaluate from a general perspective since 

it may work well for one topic but not another, it has multiple components that 

would need to be assessed separately, and possibly in different ways. For 

example, the current article is long despite analysing a single topic, omitting the 

background information about that topic necessary for the reader to evaluate the 

findings, and presenting a limited subset of the results. 

The current article illustrates the above problems by introducing and critiquing a 

method for gathering and analysing YouTube comments on a relatively large scale 

(larger than any previously published academic analyses of a topic on YouTube) to gain 

quick free insights into an issue, with a focus on gender, sentiment and discussion 

themes. An application to dance videos is used to discuss the generic potential and 

limitations of research methods based on social media analytics.  

Research questions 

This paper introduces the Comment Term Frequency Comparison (CTFC) social media 

analytics method to investigate YouTube culture around a specific topic. This paper 

critiques this method with four specific research questions. 

 RQ1: Can the CTFC method identify plausible and/or insightful subtopic 

dimensions of discussions about a topic in YouTube comments? 

 RQ2: As above for gender dimensions. 

 RQ3: As above for sentiment dimensions. 

 RQ4: As above for networks of relationships between topics. 

The YouTube CTFC method comprises a technique for gathering relevant YouTube 

comments and techniques for analysing them, all supported by the free Webometric 

Analyst and Mozdeh software. Like grounded theory and similar qualitative approaches, 

the primary analysis method is exploratory and can be characterised as a (sophisticated) 

fishing expedition because its goal is to gain insights into the topic rather than to test 

hypotheses. It is therefore impossible to assess the efficacy of the method rigorously. 

Moreover, the method is a combination of multiple different approaches so that it would 

be difficult to perform a more sophisticated evaluation based upon multiple topics. 

Nevertheless, there is a need for general purpose exploratory YouTube analysis 

methods, given the popularity of the site, and these limitations are generic to any such 

attempt. 



The CTFC method 

This section gives an overview of the CTFC method. For an extended version with 

additional technical details and software instructions, see Appendix 3. 

CTFC Step 1: Data gathering and filtering 

The data gathering step involves creating a list of relevant videos and downloading their 

comments. The recommended data gathering stages are illustrated here with the dance 

videos topic. 

(1) Topic definition and delineation: The scope of the project is defined at the 

outset. This is designed to guide decisions about which videos are relevant and 

should be guided by the goals of the research project. Dance: the scope of the 

project is videos with a primary focus on a single dance style, including 

instructional and performance videos.  

(2) Initial subtopic query set generation: The topic is split into a set of subtopics 

and a YouTube query generated to match each one. Dance: The subtopics are 

dance styles and the initial query set was generated from a Wikipedia page on 

Dance style categories (en.wikipedia.org/wiki/List_of_dance_style_categories) 

with dance style names recorded as phrase searches. 

(3) Query testing and refinement: Each query in the set generated in the previous 

step is tested in YouTube.com to ensure that it generates a high percentage (90% 

as a guideline figure) of correct matches. 

(4) Video list generation:  Software is used to download a list of videos matching 

the queries. Dance: The list of 36,702 videos with title matches was used. 

(5) Video list checking: The list of videos matching the queries is checked and false 

matches removed. 

(6) Comment downloading: Software is used to download the comments on the 

matching videos. 

(7) Duplicate commenter removal: Users are restricted to a maximum of one 

comment each to protect the word frequency analysis from the actions of prolific 

individuals. 

(8) Comment pre-processing: The comments are loaded into the analytics software. 

(9) Language filtering: Comments not in the chosen language are filtered out. A 

simple way to achieve this approximately is to exclude all comments that do not 

contain any terms that are common in the selected language and rare in others 

(Grefenstette, 1995). 

The above steps produce dataset of YouTube comments in the chosen language, 

together with the identity of the videos commented upon, the commenter and the query 

used to find the videos. 

CTFC Step 2: Time series graph 

A time series graph is produced to assess the typical dates of comments as background 

information. 

CTFC Step 3: Subtopic word frequency analysis 

The subtopic word frequency analysis seeks issues that are characteristic of each 

subtopic in the sense of being more discussed by people that comment on the subtopic 

than on other subtopics of the broad topic. It is important to keep the comparison within 



the broad topic so that the characteristic issues of subtopics are more fine-grained. A 

related approach has previously been used with Twitter (Bryden, Funk, & Jansen, 

2013).  Subtopics could also be analysed using topic modeling (Blei, Ng, & Jordan, 

2003) instead of word frequencies. Topic modeling produces clusters of mutually 

related terms that tend to represent topics. In the current context, topic modelling would 

identify issues within each individual subtopic but could not then compare them 

between subtopics and so it is not used here. 

The word frequency analysis method is to compare the frequency of terms that 

match one subtopic with their frequency for the remaining subtopics to find terms that 

are unusually frequent for the chosen subtopic. The chi-squared statistic is used for this 

by listing terms that are more frequent for the subproject in descending order of chi-

square value.  

This method is imperfect for several reasons. It relies upon individual words 

whereas concepts may be expressed through phrases. If key concepts are expressed 

using phrases that only include common words (e.g., “to be or not to be”) then the 

method will not identify any of the words within the phrase and the concept will be 

missed. This could be resolved by using natural language processing techniques to 

extract key repeated phrases, but this uses much computing time and adds to the amount 

of information to be processed. This alternative phrase-based approach may be 

considered if there is relatively little information or if a deeper analysis is needed and 

time and resources are available for it. A second problem is that the comments may 

contain substantial unrelated discussions, such as an off-topic argument between two 

commenters, and these can result in spurious issues being identified. This can be 

guarded against by reading a random sample of comments from the subtopic containing 

the identified keyword. Finally, the terms for each individual subtopic depend on the 

other subtopics in the set. For example, if there is only one subtopic about swing 

dancing then the term “swing” is likely to be near the top of its term list, but if there are 

several swing subtopics, then this would make the term less specific to the subtopic and 

reduce its chi-squared value. There does not appear to be a solution to this issue and so 

it must be accepted that the results of a word frequency analysis are not necessarily 

comprehensive. 

The top terms (e.g., the 50 with the highest chi-square value) identified by the 

basic word frequency analysis are manually examined for relevance and insights into 

the subtopic. A term’s importance should be interpreted using the fact that it is 

relatively frequent in subtopic comments compared to the other subtopics. The top 

terms are likely to include predictable nouns associated with the subtopic, including the 

subtopic name, but terms with a less obvious association are more interesting. The 

presence of irrelevant terms that need to be identified manually and removed is 

expected from any word frequency comparison approach (Thelwall, Prabowo, & 

Fairclough, 2006). 

CTFC Step 4: Gender differences analysis 

The gender differences analysis seeks issues that disproportionately originate from male 

or female commenters. This can point to gender differences in opinions about the videos 

as well as the aspects of the videos that are discussed, although not their causes. Gender 

differences may give insights into a topic even if a study does not have a specific focus 

on gender. For this, terms in the female-authored comments are compared to terms in 

the male-authored comments (a) overall for the project and (b) for each individual 

subproject. Although commenter gender information is (no longer) provided by 

YouTube, it can be inferred from commenters’ names. Commenters must be registered 



within YouTube and have a channel name (possibly with spaces) and a username 

(without spaces). Potential first names should be extracted from the first of these and 

from the second if it uses camel case (e.g., PardeepSingh) and then compared against a 

dictionary of common first names, organised by predominant gender. 

 In principle, it may also be interesting to conduct comparative word frequency 

analyses by age range, nationality, and other demographic variables but no information 

about these is available from YouTube.  

CTFC Step 5: Sentiment analysis 

The sentiment analysis seeks issues that elicit particularly strong positive or negative 

sentiment. These are identified by a word frequency comparison of comments with 

strong sentiment against the remainder. This is achieved through automatic sentiment 

strength detection, such as with the program SentiStrength that is designed for the short 

informal text of social media posts, including YouTube comments (Thelwall, Buckley, 

& Paltoglou, 2012). Other sentiment analysis programs (e.g., Taboada, Brooke, 

Tofiloski, Voll, & Stede, 2011) are likely to give broadly similar results. For positive 

sentiment, the technique is the same as for the basic word frequency analysis except for 

splitting the comments into two sets, one of which has a positive sentiment strength 

score of at least 3 (moderate) out of 5, and the second set containing the remaining 

comments. For negative sentiment strength, the procedure is the same except that the 

split is based on comments having a negative sentiment strength of at least 3 out of 5. 

Both analyses are conducted across the whole project or within individual subprojects. 

CTFC Step 6: Overview network 

The overview network is a network diagram of strength of relationships between 

subtopics. Although subtopic similarity can be analysed by many different statistical 

methods, such as clustering, factor analysis or multi-dimensional scaling, the method 

recommended here is a simple network diagram, with subtopics represented by nodes in 

the network and lines occurring between nodes when their comments tend to use similar 

words. This network is therefore a comment term similarity network. A network is 

preferable to cluster analyses and multidimensional scaling because subtopics on 

YouTube can be expected to relate to others in multiple different ways, rather than 

through a few dimensions of difference. 

The logical metric to use to compare subtopic term similarity is the standard 

information retrieval metric of cosine similarity based upon Term Frequency and 

Inverse Document Frequency (TF-IDF). This measures the virtual angle between two 

subtopics, with wider angles occurring for pairs of subtopics that tend to use different 

terms. Here the term frequency is the number of comments within the subtopics that 

contain a term rather than the total number of terms in all comments within the 

subtopics (i.e., multiple occurrences of a term within a single comment are ignored). 

The TF-IDF weighting gives more importance to terms that are common for the two 

subtopics compared and rare in other subtopics. Other measures of document similarity 

could also be used (e.g., Huang, 2008). 

CTFC Steps 0 and 7: Pilot testing and insight verification 

The above analyses are likely to be influenced by spam, off-topic conversations in 

comments, and off-topic videos. The initial results may therefore not give substantial 

insights. Two strategies are recommended to maximise the value of the method: pilot 

testing and insight verification. 



A small-scale initial pilot test is run to identify any large scale obvious problems 

with the initial queries for subtopics. All analyses are attempted in the pilot study to 

quickly check for likely sources of off-topic information so that the subtopic queries can 

be adjusted to avoid them in the main test.  

The second strategy is to trace and verify the causes of all insights during the 

main analysis. This means reading comments containing the relevant terms, except in 

the case of the network diagrams, where this is not possible. In cases where the cause of 

an apparent insight is spam or off-topic comments, the insight should be ignored. If 

there are too many problems at this stage then the analysis is repeated with modified 

queries to eliminate the problems. Thus, for a particularly serious project, the method is 

repeated until the insights reflect the topic rather than spurious factors. 

Results 

This section describes the result of applying the CTFC method to the topic of dance in 

YouTube videos, as described above. See Appendix 1 for background information about 

the issue. 

Step 2: Time series graph 

Comments on the videos matching the search spanned an 11-year period, with 

disproportionately many from recent years (Figure 1). The increase over time is partly 

due to older videos being deleted and older comments not being retrieved for videos 

with greater than the per video maximum from the YouTube API.  

 

 

Figure 1. Overall comment frequency per month for the complete dataset. 

Step 3: Subtopic word frequency analysis 

For each of the 30 dances (i.e., subtopics), the five words most strongly associated with 

the videos matching the dance style searches were analysed (Table 1). These are terms 

that occur more frequently in comments for a given dance video set compared to the 

remaining dance video sets. Although a fuller analysis would cover more terms, 

analysing the top five for each dance may give insights into the aspects of the dance that 



are most comment-worthy on YouTube, and hence help to evaluate transparently 

whether CTFC Step 3 is likely to be useful. 

 Most of the top terms are dance genre names, dancer names, songs, or dance 

moves (Table 1), none of which seem likely to give deep insights into an individual 

dance genre. A partial exception is that in some cases the music-terms point to an above 

average degree of association between the dance and the music, or a subsumption of the 

dance within the music (hardcore dancing, electro dance).  Terms that mention a 

country or nationality are not particularly insightful either, except in the case of 

Bollywood dance, where analysis of the comments containing the terms points to an 

individual high profile example of the dance, given by a successful Miss America 

candidate as part of the contest. 

 Sentiment terms are rarer in Table 1. Contemporary dance is disproportionately 

seen as being beautiful, Hit Dem Folks as being lit, with the dancers killing it, whereas 

Zumba is fun. In the first two cases the positive reception of the dances are partly 

language-specific, however. The contrasting language styles of these two cases point to 

the importance not only of the sentiment expressed but also the term selected to express 

it. Thus, the other dance styles are either appreciated less or are appreciated with more 

commonly used terms. Thus, the key sentiment finding is that both dance genres are 

appreciated with unusual terms. For Zumba, the term fun suggests enjoyment through 

participation, perhaps set against a context in which people expect not to enjoy exercise. 

The context terms help to identify topics that are driven by a primarily non-

dance issue, such as those associated with a video game (Ballroom, Disco dancing, 

Electric boogaloo). In addition, they point to ritual contexts in which a dance may be 

used (Bachata, Cheer dance, Hardcore dancing) or a dance’s origins (Crip walk). 

Overall, then, whilst most of the terms do not give deep insights into dance 

genres, some may and the terms can also point to data collection problems and 

individual important contexts for the dance.  

  



Table 1. The top five terms for each dance. These are relatively common in comments for each 

dance compared to comments for other dances (English comments only, includes non-gender 

commenters). Terms associated with the dance name, moves, music, and origins are in bold. 

Pronouns and names of people are in italic. Sentiment terms are underlined. Terms associated 

with appearance are italic and underlined. Terms associated with lessons are bold and 

underlined. 

Dance genre Top 5 terms Comment 

Acro dance acro Chloe Abby Katrina tuck  Back tuck: move 

Bachata dance bachata Dominican chambelan quince ven  Ven tu: song name 

Ballet dance/dancing ballet pointe ballerina Kaylee splits  On pointe, splits: positions 

Ballroom dance Squall Rinoa ff8 fantasy ballroom  ff8: Computer game 

Belly dance belly Sadie Shakira Joven Ellen   

Bollywood dance Indian Bollywood India Nina America  Miss America, Nina Davuluri 

Breakdancing Bridgette breakdancing Roger bboy Mr   

Cheer dance cheer team cheerleader tryout cheerleading   

Contemporary dance contemporary Travis Tate beautiful Robert   

Crip Walk crip walk blood gang Gosu   

Disco dance toby disco Jessica Sylvester Rayman   

Disco dancing map muselk server Alfie disco  
Team Fortress 2: Computer game 
disco-themed custom map  

Electric boogaloo Jesse game boogaloo space Karkat  
Dragon Age 2, FTL: Computer 
games 

Electro Dance electro mix yarus remix mixes  Electro dance is a music style name 

Hard dance 
Monstercat hardstyle Stonebank Ravine 
hard  

Hard dance is a music style name 

Hardcore dancing hardcore pit mosh moshing metal  
Moshing, mosh pit: dances; Metal: 
music style 

Hip Hop dance Kenneth Matt Jabbawockeez bailey dana  
Jabbawockeez: Hip Hop dance 
crew. 

Hit Dem Folks lit folks hit Meechie killed  Lit, killed: excellent;  

House dance momo house mix Junho Chaeyeon  
“House dance mix” a common 
phrase 

Jazz dance jazz flute turn pirouette jazz-funk  
“Freedom jazz dance” piece for 
flute; Pirouette: dance move 

Jumpstyle dance jumpstyle Klaas elan hardjump tecktonik  Hardjump, tecktonik: dance styles 

Kpop dance kpop Infinite BTS VIXX Miu   

Line dance line wobble cotton boots linedance  
Wobble: dance move; Cotton eyed 
joe: song; Boots: clothing 

Lyrical dance Jadine lyrical Nadine Gerald Ade   

Melbourne Shuffle shuffle shuffling melbourne shuffler lmfao  Lmfao: funny 

Popping dance popping Dytto Hoan Nelson Gucchon   

Reggaeton dance reggaeton Maga Yomo Inga calla  Bella Calla: song 

Robot dance robot Usher mj Michael Jackson   

Salsa dance salsa Eugene Claudia Cuban quimbara  Quimbara: song  

Tap dance tap tapping cover Irish Tamera  

Just (Tap) Dance: Song (cover 
version); Mislabelled Irish dance 
video; 

Zumba dance zumba workout Vijaya Madelle fun  Zumba is a dance fitness program 

  



Step 4: Gender differences analysis 

The five words most strongly associated with females and males within the comments 

for each dance style (Table 2) were analysed for insights into gender differences. Again, 

the purpose of analysing just the top five terms is to evaluate whether Step 4 is likely to 

be useful. 

Females. In the entire corpus, the 10 most female-associated terms are: she, amazing, 

her, beautiful, cute, omg, belly, ballet, really, workout. These include female pronouns, 

dance styles, positive sentiment terms and a use of dance (workout). 

Positive sentiment in individual dance genres: Positive sentiment terms are a female-

associated characteristic, including cute (M:1 topic; F:6 topics), omg (M:0; F:8), 

amazing (M:0; F:8), liked (M:0; F:2), thanks (M:0; F:3), awesome (M:0; F:1), good 

(M:0; F:1), beautiful (M:1; F:3), but with some exceptions: great (M:1; F:0), sexy (M:1; 

F:0), hot (M:1; F:0). 

Pronouns: Pronouns are a female-associated characteristic, including she (M:0 topic; 

F:8 topics), your/you’re/u (M:0; F:4), her (M:0; F:3). Pronouns (and thanks: M: 0, F:3) 

suggest a more direct involvement in the people in the video (she/her) as well as 

exchanges with other commenters (your/you’re/u). 

Appearance: Comments on the appearance of the dancers are a female-associated 

characteristic, including cute (M:1 topic; F:6 topics), shoes (M:0; F:1), hair (M:0; F:1), 

makeup (M:0; F:2), outfit (M:0; F:1), with the exception of sexy (M:1; F:0), hot (M:1; 

F:0). 

Learning or practicing: Terms associated with learning are female-associated, including 

learn/learned (M:0; F:1), class/classes/teach (M:0; F:2), workout (M:0; F:2), and 

perhaps also can/can’t (M:1; F:3). 

 

  



Table 2. Top words (highest chi-square) for female compared to male authored 

comments for the dance and vice versa. Terms associated with the dance name, moves, 

music, and origins are in bold. Pronouns and names of people are in italic. Sentiment 

terms are underlined. Terms associated with appearance are italic and underlined. Terms 

associated with lessons or workouts are bold and underlined.  

Dance subtopic Top 5 terms for females Top 5 terms for males 

Acro dance how acro year Abby u  original watch must spectacular honest  

Bachata dance main dress cute chambelan* did  en Edwin salsa bachata style  

Ballet dance/dancing she her pointe when year  god art watched system culture  

Ballroom dance cute omg makeup ballroom classes  game best second already people  

Belly dance move skinny thanks she I’m  Joven sexy he instant hot  

Bollywood dance she with else you're loved  India shit at anti-white since  

Breakdancing Annie snow house Bratayley gymnastic  shit game bboy bitch Wolf  

Cheer dance cheer trying out do team  NU** sa ang na lang  

Contemporary dance amazing beautiful Maddie you're use  funny bitch front film bich  

Crip Walk liked amazing good xx hell  walk c clown gangsta real  

Disco dance workout Jessica fun challenge day  mix lo does who la  

Disco dancing she amazing her beautiful cute  shit fuck shuffle man fucking  

Electric boogaloo Karkat hardy voice act too  better does ship lot Jesse  

Electro Dance shoes wonderful kept watching walking  don't keep fuck track DJ  

Hard dance cute v makeup hair beautiful  on hardstyle dj remix fucking  

Hardcore dancing she girl hardcore omg shower  hardcore mosh your fag if  

Hip Hop dance amazing Kenneth she Dana omg  crew Jabbawockeez shit name best  

Hit Dem Folks killed cute her outfit liked  shit bro kid cop tre  

House dance Junho Momo ending Taecyeon Wooyoung  mix man fuck music name  

Jazz dance turn amazing she really loved  he guy isn't play playing  

Jumpstyle dance can amazing jumpstyle omg haha  can man jumpstyle hardjump they  

Kpop dance really infinite them best vixx  Asian girl porn beautiful sex  

Line dance fun make class have teach  de DJ left dude old  

Lyrical dance your well on did have  kc night similar took man  

Melbourne Shuffle omg xx thanks meh awesome  smack alpha twin vid nice  

Popping dance omg Dytto she cant amazing  name more John popping battle  

Reggaeton dance cute am can don't reggaeton  cute bro hot ass all  

Robot dance Michael omg amazing wow usher  guy camera judge popping up  

Salsa dance Eugene Claudia judge really couple  video great name Anthony from  

Tap dance much omg been learn learned  play deck guy bass band  

Zumba dance fun thanks much workout Jessica  Google information his shed esta  

* Chambelan (Spanish) escort **NU: National University (Philippines). Related terms are from 
bilingual comments. 
 

 

Males. The 10 most male-associated terms in the whole corpus are: shit, fuck, shuffle, 

man, fucking, crip, dude, bro, shuffling, hardstyle. These include male common nouns, 

dance styles and swear words. 

Swearing: Strong and moderate swearwords are male-associated, including fuck/fucking 

(M:4 topics; F:0 topics), and shit (M:5; F:0). The term shit was usually associated with 



mildly negative sentiment, but also had a few positive uses, such as in the phrase, 

“[pronoun or name] killed that shit”. Fucking was usually employed as a booster term in 

a negative context and fuck was used in varied negative ways. 

Music: Name is a male gendered term (M: 4; F: 0) and typically associated with a 

comment requesting the song name. This aligns with the higher use of explicitly music-

related terms by males, such as play/playing (M:2; F:0), mix/remix (M:3; F:0), and 

music (M:1; F:0). 

Common nouns: Several generic terms for people, especially male(s), were male 

associated, including people (M:1; F:0), man (M:4; F:0), dude (M:1; F:0), bro (M:2; 

F:0), and bitch (M:2; F:0), but not girl (M:1; F:1). This suggests a more abstract 

perspective compared to the use of pronouns by females. 

Overall, the gender differences analysis seems to give much more substantial insights 

into gendered reactions to videos, both overall and for individual dance genres. The 

strongly gendered comments are unsurprising given the importance of gender for most 

types of dance. 

Step 5: Sentiment analysis 

The ten terms associating most strongly with positive sentiment (see online appendix) 

overall were: Please; nice; wow; beautiful; loved; job (e.g., nice/great/good job); 

pretty; hope; perfect; keep (going/up the good work/it up). For five dance genres, 

the term dancer suggests positive comments about the dancers, and for others the terms 

hilarious/lmao (8 dances) suggest amusement. Other occasional sentiments are respect 

(4) and inspire/inspired/inspiration (4). Occasional topics include mix/mixes (4) and 

workouts (4). 

For the Melbourne Shuffle, terms in commonly echoed track listings were 

excluded for sentiment classification of the titles (Scantraxx Roots - Headhunterz Vs 

Abject Superstar DJ - Dark Oscillators Smack my derb - Alpha Twins Young Birds - 

Patrick Bunton). 

The ten terms associating most strongly with negative sentiment overall were: 

Shit; fuck; killed; stupid; wtf; hate; idiot; dislike; die; dead. For several dances 

terms associated with fear are evident (afraid/scared: 4 dances) suggesting performance 

worries (except for the Kpop comments). The negative sentiments in some comments 

were expressions of sadness elicited by a performance, which is implicit praise for it: 

crying/cry (4), sad (1 - 7 times used in other contexts). Another common term is 

annoying (7 dances), directed at dancers, commenters, minor parts of the video, and the 

video production.  

The terms choreo/choreography/choreographer (5 dances) caused sentiment 

classification errors (matching the base negative term stem chore*) and were excluded 

from the results, as was the term holy, as found in the phrases “holy shit” and “holy 

crap”. The songs I'll Hurt You - Busta Rhymes ft. Eminem and The Quick and the Dead 

– Rudebrat caused incorrect sentiment results for Popping dance and their constituent 

terms were excluded. 

Overall, whilst the negative sentiment terms seem to point to individual 

incidents rather than general themes about the dance genres, the positive terms suggest 

different ways in which the videos are enjoyed (i.e., gratifications gained from them). 

Step 6: Networks 

The network (Figure 2; see also Appendix 2) show the existence of several clusters of 

dances with videos that have attracted similar comments. 



Melbourne Shuffle/Hard dance/Jumpstyle dance connecting to Electro dance/ House 

dance: These all have more male than female commenters and are participatory rather 

than performance dances. 

Acro/Ballet/Contemporary/Jazz: The first three of these are classical dance styles jazz 

dance and all four are theatre-based performance arts. These all have more female than 

male commenters. 

Lyrical/Cheer/Zumba dance: These do not have a natural association except for having 

more female than male commenters. Lyrical dance was formed from ballet, jazz and 

contemporary dance and so fits better within a different cluster. They associate because 

all have some bilingual English/Filipino comments. 

Salsa/Bacheta/Reageton: These are Latin dance styles. They have more female than 

male commenters. 

 

 

Figure 2. A network of the (cosine) similarity between the terms used in comments 

posted to each dance topic videos. Only the strongest 25% of all connections are shown. 

Disconnected nodes are shaded in blue. Thicker lines indicate higher cosine similarity 

between topics. Node area indicates comment volume. 

 

It is difficult to evaluate the usefulness of the networks since they point to patterns that 

seem reasonably obvious but also have unexpected gaps. 

Discussion and limitations 

RQ1: Can the CTFC method identify plausible and/or insightful subtopic dimensions of 

discussions about a topic in YouTube comments? Whilst the subtopic comparison 

results seem to be broadly plausible (the discussion around Table 1), none of the terms 

seem likely to surprise an expert on these dance styles and so it is difficult to ague that 

the method has been insightful. 



RQ2: Can the CTFC method identify plausible and/or insightful gender 

dimensions of discussions about a topic in YouTube comments? The method was 

successfully able to identify a range of themes and attitudes that were predominantly 

from either females or males for individual dances and across the dance topic. For 

instance, there was a male focus on music for some dances and a female association 

with positive sentiment. Whilst these seem plausible, none seem obvious and so it 

seems reasonable to claim that they are insightful. 

RQ3: Can the CTFC method identify plausible and/or insightful sentiment 

dimensions of discussions about a topic in YouTube comments? The sentiment terms 

gave some plausible insights into why dances were liked, such as for individual dancers 

or if they were considered to be humorous. This information seems plausible and may 

also be useful to a researcher of dance genres. It could therefore be claimed to be 

somewhat insightful. 

RQ4: Can the CTFC method identify plausible and/or insightful networks of 

relationships between topics? The network diagrams were plausible in some of the 

clusters but with clear anomalies. Network diagrams are difficult to evaluate for 

accuracy but can be useful a starting point for interviews with experts to trigger 

discussions and as a starting point for their analysis of structure (Cross, Borgatti, & 

Parker, 2002). The network diagrams presented here seem to be adequate for this 

purpose. A limitation of the networks is that it is impossible to see the reason for the 

strength of the connections in the graphs and they could be due to similarity in language 

styles, sentiment or topics of discussion, and are partly due to coincidences. 

Both the networks and the word frequency analyses point to some subtopics not 

being a good fit for the dance category. One problem is that the method used to select 

the dances for analysis apparently selected at least one rare dance (Electric Boogaloo) 

that attracted many videos and comments only because of its inclusion in a video game. 

The findings around this dance were therefore not insightful about dance in general or 

even about this dance itself. The Bollywood dance example is similar in the sense that 

discussions around the topic were arguably not relevant to dance as much as the wider 

social and cultural issues triggered by its performance by a Miss America winner. Issues 

such as these could be circumvented by an additional round of manual filtering to 

remove Electric Boogaloo and Miss America-related comments. In practice, a decision 

to conduct this extra round of filtering would depend on the underlying goals of any 

analysis. 

A generic problem for any analysis of YouTube comments is that “the feedback 

from those who did not post comments is unknown” (Chung, 2015). Away from 

YouTube, the attitudes of people who do not watch relevant YouTube videos is 

similarly unknown. 

An important limitation is that the results influenced by the mix of types of 

dance video for each genre. Some were instructional, others were professional or 

amateur performances, and others seemed to be more about the music than the dance. 

Whilst it would have been possible to manually filter the videos so that they would only 

have been about one aspect, such filtering is time consuming and reduces the total 

number of comments available for analysis. 

A more generic limitation is that the value that can be extracted for a topic may 

vary considerably between topics, with some yielding nothing and others perhaps 

yielding more than dance. Thus, the current paper illustrates the potential and 

limitations of the method but does not prove its usefulness for any given other topic. 

Another generic limitation is that the word frequency methods include a degree of 

unpredictability because key concepts that do not have unique names may not be picked 



up. Thus, important subtopic, gender and sentiment issues may have been overlooked 

because they were typically described with common words and hence did not rank 

highly in the word lists. Thus, the CTFC method is intrinsically not comprehensive and 

prone to overlooking important issues. In addition, whilst some comments were about 

the dances themselves but others were about specific events in videos that might not be 

relevant to the dance. Discussions about a fight at a salsa dance are an example of this. 

Highly commented videos that mention the topic frequently in a peripheral way (e.g., 

Electric Boogaloo; perhaps Miss America for Bollywood dance) are also a problem for 

detailed insights and point the importance of manual filtering and keeping in mind clear 

goals for an analysis to aid this filtering. 

Finally, the implementation and evaluation of the CTFC method are subjective 

to the author and it is a human trait so identify patterns where there are none, so the 

interpretation of the positive aspects of the data may be optimistic.  

Conclusions 

The CTFC method has described some aspects of the dances analysed and the context in 

which they are discussed on YouTube. The results highlight gender, sentiment and sub-

topic differences between the dances that could serve as a starting point for deeper 

analyses of the topic, such as through interviews or ethnographies. Although the method 

is supported by software, manual checking is needed of the initial queries and the term 

frequency lists produced, and the results seem likely to be influenced by some irrelevant 

discussion for any topic. 

Applications of the CTFC method are most likely to be successful for topics that 

are extensively discussed on YouTube, especially if the discussions tend to be narrowly 

focussed on the topic of interest rather than on other issues. The method would therefore 

be particularly useful for discussing large scale YouTube-specific phenomenon but 

might also be useful in other contexts to give an initial exploratory analysis of an issue 

that has not been researched before. In this context, some of the findings might be 

useful to confirm or deny the researcher’s initial understanding of a topic that has not 

been researched much before and for which there is not a body of background evidence 

to rely upon. 

Finally, the results illustrate that social media analytics methods are almost 

inevitably exploratory and hence, even though they are likely to involve quantitative 

methods, are unlikely to be assessable through traditional hypothesis testing because 

the null hypothesis would not exist before the analysis. For social media analytics, 

this echoes a previous recognition that in the age of knowing capitalism sociology 

needs, “a radical mixture of methods coupled with renewed critical reflection” 

(Savage, & Burrows, 2007, p. 896; see also: Savage, & Burrows, 2009; Beer & 

Burrows, 2013) that is likely to be increasingly descriptive. Text-based social media 

analytics are challenging because they are not basic facts, survey question responses 

or discussions with researchers; instead they use a range of strategies to make 

limited and sensible exploratory deductions from collections of public web texts.    
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