Sedentary Behaviour in Rheumatoid Arthritis: Definition, measurement and implications for health

Sally AM Fenton,¹,² Jet JCS Veldhuijzen van Zanten,¹,² Joan L Duda, ¹ George S Metsios,¹,³ & George D Kitas¹,²

¹School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK

²Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley, UK

³Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK

Corresponding Author: Dr Sally Fenton, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston Park Road, Edgbaston, Birmingham (UK), B15 2TT. Email: s.a.m.fenton@bham.ac.uk

Running head: Sedentary behaviour in RA

Abstract

Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterised by high grade-inflammation, and associated with elevated cardiovascular risk, rheumatoid-cachexia and functional impairment. Sedentary behaviour is linked to heightened inflammation, and is highly pervasive in RA -likely as a result of compromised physical function and persistent fatigue. This high sedentarity may exacerbate the inflammatory process in RA, and hold relevance for disease-related outcomes. The aim of this narrative review is to provide an overview of the definition, measurement and health relevance of sedentary behaviour in the
context of RA. Contradictions are highlighted with regards to the manner in which sedentary
behaviour is operationalized, and the significance of sedentary behaviour physiology for
disease-outcomes in RA is outlined. The advantages and disadvantages of sedentary
behaviour measurement approaches are also discussed. Against this background, we
summarise studies that have reported sedentary behaviour and its health correlates in RA, and
propose directions for future research.

Key Words: Sedentary Behaviour, Rheumatoid Arthritis, Inflammation, Sitting, Cachexia,
Functional Disability, Cardiovascular Risk, Measurement validity, Accelerometer.

Key messages:
- Sedentary behaviour may exacerbate already heightened inflammation in RA and hold
 relevance for disease-related outcomes.
- Studies investigating sedentary behaviour in RA are limited by several methodological
 inconsistencies.
- Future studies should employ more rigorous and standardised methodologies to
 investigate sedentary behaviour in RA.

Introduction

Sedentary behaviour: definition and health relevance

The term sedentary behaviour (SB) - derived from the Latin term sedere, meaning to sit – and
is often simply defined as too much sitting [1]. Until recently, a common misapprehension
has been that SB merely reflects the absence of purposeful physical activity, defined as
moderate activity of ≥ 3 metabolic equivalents (METS, 1 MET = oxygen consumed at rest
i.e., 3.5 mL/kg-1.min-1; 3 METS reflects moderate paced walking). However, a lack of
moderate intensity physical activity should be referred to, more accurately, as physical
inactivity [2]. Indeed, current thinking recognises that SB and physical inactivity are separate constructs, and can be operationalised as such.

In 2012, the Sedentary Behaviour Research Network (SBRN) defined SB as any waking behaviour characterised by activity of ≤1.5 METS and a sitting or reclining posture (e.g., television (TV) viewing, computer use, reading and driving) [2]. In contrast, physical inactivity is defined as insufficient/irregular engagement in moderate intensity activity of ≥3 METS towards recommended levels (i.e. 60 minutes/day for adults) [3]. Thus, physically inactive individuals can also be non-sedentary, where, in the absence of moderate intensity activity, they still engage in substantial amounts of light physical activity (i.e., 1.6 –2.9 METS) and spend little time sitting [3, 4]. Similarly, sedentary individuals can also be physically active, i.e., they spend large portions of the day sitting but engage in the recommended 60 minutes of MVPA each day (Figure 1).

This move towards a more consistent thinking with regards to the modern conceptualisation of sedentariness is born out of recent findings demonstrating that SB holds deleterious consequences for health independently of any beneficial effects of physical activity engagement [4-11]. In particular, there is evidence that implicates SB as a precursor of heightened systemic inflammation in both healthy and clinical populations, irrespective of levels of the anti-inflammatory effect of physical activity [8-11]. Indeed, there now exists a considerable amount of evidence demonstrating SB to be an independent risk factor for cardiovascular disease, the metabolic syndrome, sarcopenia and Type 2 diabetes, all of which have chronic systemic inflammation in common[9,10,12-16]. These independent health effects may result from differences in the acute and chronic physiological responses to sedentary behaviour vs. physical activity engagement[17]. Indeed, divergent cellular mechanisms are reported to underlie the decrease in lipoprotein lipase (LPL) activity that can occur in response to sedentary behaviour, compared to the increase in LPL observed during
physical activity. For example, LPL activity is ≥10-fold lower in red oxidative muscle fibres during sedentary behaviour, whereas a 2.5 fold increase in LPL activity is observed in white glycolytic muscle fibres after exercise. Similarly, LPL mRNA expression is increased in glycolytic muscles in response to physical activity, where no change is observed in mRNA expression following prolonged sitting [18-20]. Low levels of LPL are associated with increased levels of circulating triglycerides and decreased levels of high-density lipoprotein cholesterol (HDL-C)[18,21] - precursors of inflammation and contributors to the progression of cardio-metabolic and cardiovascular disease[22,23]. Thus, evidence points to the possibility that regulation of LPL activity might represent a key cellular mechanism underling the independent associations between sedentary behaviour, inflammation and adverse health outcomes.

Given that many individuals spend the largest proportion of the day being sedentary (e.g., 55–60% of waking hours) [24], reducing sitting time and sedentary behaviour change have become public health priorities for chronic disease prevention [1,3]. Consequently, an increasing number of large-scale cohort studies continue to advance our understanding of the determinants and health consequences of SB [8,25-27]. However, whilst research in this domain continues to grow exponentially from an epidemiological perspective, far less work has focussed on specific clinical cohorts.

Examining the relevance of SB for health outcomes in individuals for whom physical dysfunction may contribute towards increased sedentariness, particularly those for which inflammation comprises a substantial component of disease aetiology, is obviously important. A prime example of such a clinical population is individuals living with Rheumatoid Arthritis (RA) for whom inflammation is a chief contributor towards disease progression, functional disability and other adverse outcomes. Indeed, high levels of SB which may result from reduced functional ability and persistent fatigue, may perpetuate the adverse consequences of
an already heightened chronic inflammatory load, and further contribute towards the risk of cardiovascular disease, metabolic syndrome and inflammation-related cachexia.

Sedentary behaviour and Rheumatoid Arthritis

Sedentary-inflammation hypothesis

RA is a chronic autoimmune disease characterised by high-grade systemic and local inflammation, joint erosion, musculoskeletal deterioration and functional disability [28]. Common sequela of uncontrolled high inflammatory load in RA include joint pain and stiffness, fatigue, compromised psychological wellbeing (e.g. depression), reduced quality of life, high CVD risk, and cachexia, amongst others[29-38].

Since SB may relate to increased inflammation, it follows that it may hold implications for such RA features. This may lead to a vicious cycle, where compromised physical function, heightened fatigue and increased local disease activity, may increase sedentariness, which, in turn, may further exacerbate inflammation and contribute towards the severity of RA-related health outcomes[39]. Figure two describes the proposed pathways by which the cyclic relationship may occur, and underpins the need for more research into the implications of SB for people with RA.

In this article we consider sedentary behaviour specifically in the context of RA. We discuss current approaches utilised to measure it, summarise available data concerning its levels and health-related correlates in RA, highlight directions for future research, and provide recommendations for researchers pursuing work in this field.

Measurement of sedentary behaviour

The established definition of SB stipulates a consideration of both low energy expenditure ≤1.5 METS AND a sitting or reclining posture[2]. Thus, in order to accurately quantify levels of SB, measures should enable valid and reliable assessment of both the energy requirements of the activity and posture (i.e., whether sitting, reclining and standing).
Moreover, assessment methods should be validated for measurement of SB among the specific populations in which they are used. Assessment tools should also enable continuous data monitoring to permit the measurement of free-living SB, and include the ability to distinguish sleep from sedentary behaviours engaged in during waking hours. Finally, the ideal measure of SB would be low cost, easy to use by participants, and produce data that are easily analysed by researchers [40].

When deliberating the utility of different measurement approaches it is also important to appreciate the components of SB proposed to be relevant to health [41]. It is not only the total amount of sedentary time accumulated that may hold implications for health-related outcomes, but also the manner in which it is accumulated. Specifically, the number and length of sedentary bouts (uninterrupted sedentary periods), and the frequency of interruptions in sedentary time (sedentary breaks), have been linked to biomarkers of chronic disease in both clinical and non-clinical populations [8-10,26]. For example, prolonged sedentary bouts are adversely associated with C-reactive protein, triglycerides, HDL-C and plasma glucose [9,10,26], where more frequent sedentary breaks associate with beneficial changes to the levels of these biomarkers[8,9]. The importance of examining the contribution of specific behaviours to total sedentary time has also been underlined: certain sedentary behaviours, such as TV viewing, may be more detrimental to physical health than others [8]. Indeed, concurrent engagement in other unhealthy activities whilst participating in more passive (relative to mentally-active) sedentary activities has been reported to result in increased adiposity and poorer cardio-metabolic health (e.g., TV time snacking)[42].

Accordingly, the health-related constituents of SB have been conceptualised using the SITT formula as follows [43]; S_{ITT} – Sedentary behaviour frequency (number of bouts of certain duration); S_{IT} – Interruptions (e.g., frequency of getting up during sedentary time); S_{TT} – Time (duration of sedentary behaviours); S_{IT} – Type (mode or context of sedentary
behaviour). In the following sections, we provide information regarding the advantages and disadvantages of different SB measurement approaches which are currently used to assess one of more components of SITT (Tables 1 and 2), including a focus on the application and validity of measures used in RA studies (Table 3).

Current sedentary behaviour measurement methods

Overview

Tables 1 and 2 provide an overview of current sedentary behaviour measurement methods. The cost, and user-reported ease and burden of use for each are described (Table 1), as well as the ability of each measure to assess SITT components, and the reported validity and reliability of instruments (Table 2). The capability offered by objective measures to assess each facet of SB (sedentary energy expenditure and posture as per the SBRN definition) is also indicated (Table 2).

Self-report methods

Until recently, questionnaire-based methods have been most frequently used to investigate SB due to their low cost, low participant burden and ease of use[41] (Table 1). In general, questionnaires involve asking individuals to retrospectively estimate their total sitting Time (SIT_T) and/or time spent in specific Types (SIT_T) of sitting behaviours (e.g., TV viewing). Diaries can also be used to gather information in this way, on the basis of time-referenced recall of behaviour (e.g., at the end of each day). However, the pervasive and varied nature of sedentary behaviours undertaken throughout the day, may limit the accuracy of recall. As a result, low validity and reliability are frequently observed with regards to retrospective self-report measurement methods (Table 2) [40,41,44].

To alleviate some of the problems associated with behavioural recall (e.g., social desirability [41]), diary-based methods that require repeated momentary time sampling (e.g., every 15 minutes), can be employed to gather real-time accounts of sedentary Time (SIT_T) and
Type (SIT). A clear advantage of this approach (coined Ecological Momentary Assessment, EMA[45]) is that it enables assessment of behaviour as it occurs. However, the time taken to complete EMA, and the advanced statistical data processing needed to analyse the data collected, means this method results in moderate-to-high burden for both the participant and the researcher. Still, the contextual data collected via EMA may also provide valuable insight with regards to the social and physical environmental factors predictive of sedentary Time (STT) and Type (SIT) among different populations.

Objective methods

Addressing some of the limitations inherent in self-report, attention is shifting towards technological innovations in objective monitoring of SB, such as accelerometers - and to a lesser extent - posture sensors [40,41,46]. Accelerometers are small, lightweight devices, usually worn on the wrist, hip or upper arm, which enable data pertaining to movement patterns (e.g., trunk, wrist or ankle accelerations) to be recorded continuously over several days. Movement data recorded by devices are typically calibrated against energy expenditure assessed via indirect calorimetry in order to identify a sedentary threshold or cut-point at which accelerometer output (e.g., signal magnitude vector – gravity subtracted, or accelerometer activity counts [47]), can be interpreted to classify behaviours requiring ≤ 1.5 METs [48-50]. Continuous behaviour monitoring via accelerometry therefore enables measurement of Sedentary (SITT) bout frequency, sedentary time Interruptions (where activity counts cross the sedentary threshold) and sedentary Time (STT). Still, whilst offering a somewhat comprehensive assessment of SIT components, it is not clear which sedentary cut-point should be employed in studies of different populations. Currently, a threshold of <100 counts per minute (cpm) is almost universally used to represent sedentary time among diverse cohorts [41]. However, this cut-point – derived from calibration studies of healthy adults [39] – has not been validated among different groups for whom the energy
requirements of behaviour may vary substantially (e.g., older adults and patient groups)[51]. Indeed, where accelerometers have been used to measure physical activity engagement, it is common for researchers to develop and validate specific cut-points to classify different intensities of physical activity among different populations [52,53].

A further drawback of using accelerometers to quantify sedentary behaviour on the basis of accelerations/movement counts, is that non-sedentary activities requiring little movement may be misclassified as sedentary. For example, accelerometers may yield movement counts associated with sedentary activity (i.e., <100cpm), during activities where energy expenditure is increased above sedentary levels (e.g., standing whilst lifting weights). Researchers have sought to overcome this limitation with the application of combined sensors that measure both movement and physiological response to activity (e.g., via heart rate, skin temperature)[54,55]. Still – even when combined with physiologic sensory ability – accelerometers lack the facility to accurately capture whether activities are undertaken whilst sitting/lying (i.e., sedentary) or standing (non-sedentary).

Posture sensors represent a recent advancement in sedentary behaviour research and are being used with increasing regularity in this field [46]. These devices are typically worn on the front of the thigh, and use accelerometer-derived information regarding thigh position (towards gravity) to determine posture classification (i.e., time spent sitting/lying/standing). Available evidence suggests posture sensors, such as the activPAL, may offer a valid measure of Sedentary (SITT) bout frequency, sedentary time Interruptions (SIT) and sedentary Time (SIT) [56]. Still, it is important to recognise that with the application of posture sensors, sedentary energy expenditure is inferred indirectly based on the assumed energy cost of sitting/lying (i.e., ≤1.5 METS)[46]. Thus, when used in isolation, both postural sensors and accelerometers are both limited in the extent to which they can accurately measure sedentariness in alignment with the SBRN definition.
Multi-site monitors - such as the Intelligent Device Energy Expenditure and Activity monitor (IDEEA) and the Dynaport Activity Monitor (DAM) - may offer a novel solution to this challenge [57]. These devices use multi-site sensor attachment (e.g., on the waist and the thigh) to determine time spent lying, reclining, sitting, standing, and in locomotion, as well as the energy cost (METS, IDEEA) or movement intensity (meters/second2, DAM) of activities [57,58]. However, the high cost of multi-site monitors combined with the high participant and researcher burden, means these instruments have not been employed extensively to study SB. Continued development of these approaches and subsequent validation work will help to confirm their effectiveness for measuring SB in different populations.

Application and validity of sedentary behaviour measurement methods in RA

Table 3 outlines the self-report methods and objective measurement methods currently employed to investigate sedentary behaviour in RA, and summarises results from studies that have examined measurement validity [56,59-61]. Preliminary work in this field suggests that overall, self-report instruments may not provide a valid assessment of time spent sedentary for people living with RA. Specifically, when compared to accelerometry, the Yale Physical Activity Survey (YPAS) and the International Physical Activity Questionnaire (IPAQ) are subject to substantial underreporting of sedentary time engagement in this patient group[59,60].

Considering objective measurement approaches, the activPAL has been found to offer an accurate assessment of time spent sitting, lying, standing and walking in people living with RA, when compared to direct observation. However, its validity for quantifying step count and the number of sedentary time interruptions has been queried (i.e., underestimation by 26% and 36%, respectively)[56]. The validity of the Sensewear Armband (SWA) has also been examined, with data indicating this device to underestimate sedentary time in RA (as computed using manufacturer-derived proprietary algorithms) when compared with energy
expenditure assessed via indirect calorimetry[61]. This underestimation was suggested to be due to the elevated resting energy expenditure observed in this patient population, relative to healthy adults in which the proprietary-SWA-algorithms tested were developed[61]. As such, these findings support the thesis that inaccuracies in sedentary time estimation may arise when studies in RA employ SB algorithms derived from calibration studies in healthy adults (e.g.,<100cpm –Table 3)[59,60,62,63].

Further perpetuating challenges surrounding SB measurement validity, discrepancies also arise with regards to the sedentary MET definition applied in RA studies. Specifically, whilst most studies in other populations have defined sedentary behaviour as ≤1.5 METS in line with the SBRN definition (based on <100cpm), recent research in RA has considered activities requiring ≤1 MET to represent sedentary activities[63,64]: it is therefore likely that common seated behaviours with an energy cost of between 1-1.5 METS (e.g., sitting and reading/typing/watching TV) are not captured in these studies[65-67]. Thus, the prevalence of sedentarity in RA may have been significantly underestimated in this work. Moreover, the application of inconsistent definitions of SB precludes comparisons across studies (of both RA and non-RA populations), hindering advancement in the understanding of SB epidemiology in this patient group.

Against this background, in the following sections, we describe the results of current research that has sought to investigate levels and health related correlates of SB in RA. We critically appraise the measurement approaches used, analytical decisions employed and how these may have impacted upon results reported and their interpretation.
Levels and health correlates of sedentary behaviour in RA

Levels of sedentary behaviour

Self-reported

Table 4 includes the results of the seven studies that have sought to measure levels of sedentary behaviour in RA using self-report [58-60,62-64,68-76]. Semanik and colleagues (2004) were among the first to investigate levels of SB in RA: using the YPAS, 48% of participants reported sitting for >6 hours/day [73]. More recently, Gilbert et al. (2015) – also using the YPAS – found that people with RA spend approximately 13 hours sitting/day, with 53% reporting >8 hours daily sitting time [60]. This is substantially higher than estimates of sedentary time observed in the majority of other self-report studies, which show 4-6 hours sitting/day in RA. There may be several reasons for such divergent results including different populations of RA patients studied, the time period during which studies were conducted, and the manner in which sitting time was estimated. For example, Yu et al. (2015) and Greene et al., (2006) relied on participant recall of total daily sitting time in their studies using the IPAQ and PADS respectively[59,72]. In contrast, Gilbert and colleagues (2015) calculated daily sitting time as: 24 hours, minus the sum of self-reported physical activity and sleep time[60]. In addition, we have proposed a cyclical relationship between inflammation, sedentariness, and further perpetuation of inflammation[39]. With this in mind, it is also important to consider that the higher estimates of sitting time observed in some studies might reflect elevated disease activity and/or a longer disease duration of the particular patient sample studied. Indeed, comparison of descriptive data indicates patients recruited by Gilbert et al., (2015) represented individuals with active disease (DAS-28 =6.44) and established RA (13.4 years)[60]. In contrast, studies reporting relatively lower estimates of sedentary time engagement included patients with less active disease (e.g., DAS-28 =2.6)[68], and shorter disease durations (e.g., 7.2 and 11 years)[59,68].
Despite evidence demonstrating specific sedentary behaviours to be particularly detrimental to health (e.g., TV viewing)[8], only two studies have distinguished between types of behaviour when assessing sedentary time accumulation in RA. Kramer et al., (2012) and Giles et al., (2008) reported TV viewing to occupy around 2 hours/day in people with RA[70,71].

Objectively assessed

Munneke and colleagues (2001) were the first to investigate the prevalence of objectively assessed sedentary behaviour in RA using the DAM (Table 4)[58]. Results indicated that over a 24-hour period, people with RA spent approximately 30.5% of time sitting and 42.1% lying. However, this study did not determine the MET costs associated with engagement in these activities. Rather, movement intensity was reported in units pertaining to speed and velocity (i.e., meters/second2)[77] Analyses also did not distinguish waking SB from sleep time, which may have resulted in inflated SB estimates. The distinction between waking SB vs. sleep is certainly important to make[40]. That is, sleep is a vital restorative process and should not be counted as sedentary time when examining levels and health related concomitants of SB.

Following this initial work, it was over a decade later when other researchers begun to employ objective devices to estimate daily sedentary time in RA. In sum, these studies report between 9 and 19 hours sedentary time each day in people with RA (Table 4)[59,60,63,64,76]. These highly variable estimates are again most likely due to methodological discrepancies, including: the instrument used (e.g., GT3X vs. RT3 accelerometer vs. activPAL), the manner in which sedentary behaviour is defined and subsequently quantified (e.g., <100cpm (equating to ≤1.5 METS), vs. ≤1 MET vs. time sitting/lying) and the data collection protocol (e.g., inclusion vs. exclusion of sleep time) (Table 4). However, a lack of detailed reporting with regards to sedentary
measurement/analysis protocols within studies, means the extent to which each of these factors may contribute towards differing sedentary time estimates in RA is difficult to establish[59,63,64,74,75].

Health correlates of sedentary behaviour in RA

Several recent studies have sought to examine health related correlates of sedentary behaviour for people living with RA, including associations with disease activity, physical function, muscle density, bone mass, and cardiovascular risk[59,63,70-72,75].

Disease activity

One study has examined the link between SB and RA-associated disease activity. In a cross-sectional study, Khoja et al., (2016) reported SB measured by the SWA, to be inversely related to disease activity score in a group of RA patients[63]. However, as with all cross-sectional studies, the causal direction of this association cannot be determined. Indeed, SB could represent both a consequence and a cause of increased disease activity in RA[78-80]. That is, early RA patients, and/or patients with controlled disease, may be better able to avoid excess sedentarity, relative to individuals with established RA and/or more active disease.

Prioreschi et al., (2014) examined longitudinal associations between SB and several health outcomes in RA. They reported reductions in SB alongside declines in morning stiffness following DMARD therapy[75]. Such findings underline the need of carefully designed longitudinal studies that could address issues of directionality/causality of associations between inflammation, SB and different health outcomes in RA. In a similar vein, studies which compare the treatment efficacy of biologic therapies vs. more conventional synthetic DMARDs for concurrently attenuating disease activity and sedentary behaviour would offer an interesting research agenda.
Muscle density and functional disability

Greene et al., 2006, were the first to report negative consequences of SB in RA, demonstrating self-reported time spent sitting and lying to be associated with disability and pain[72]. Giles et al., (2008) later showed self-reported daily TV time to associate with deleterious consequences for functional ability in RA[71]. Specifically, this cross-sectional study revealed each hour of TV viewing per day, was associated with a 0.09 unit increase in functional disability. The subsequent findings of Kramer et al. (2012) showed that TV viewing was negatively related to total muscle density, while total muscle density was positively associated with functional ability. Thus suggesting decreased muscle density as a plausible mechanism underlying this association[70]. Findings such as these support the hypothesis of a sedentary-inflammation pathway in RA, and require further investigation: sedentary time may exacerbate inflammation-induced cachexia, a chief contributor towards reduced muscle density and associated declines in physical function in RA[81].

Bone mass

A recent study indicates SB may also be linked to lower bone mass in RA[62], holding implications for the development of osteopenia and subsequent osteoporosis. Prioreschi et al., (2015) reported patients with below average bone mass accrued 2 hours more accelerometer-assessed sedentary time each day (defined as <100cpm), than those with a normal bone mass[62]. The role of pro-inflammatory cytokines have been underlined in the development of osteoporosis in RA, with evidence for the efficacy of biologic therapies targeting inflammatory cytokines protecting against bone degradation[82]. Heightened local and systemic inflammation resulting from SB in RA, may therefore also contribute towards increased risk of osteoporosis in these patients.
Cardiovascular risk

Khoja et al. (2016) also reported detrimental associations of SB with a number of cardiovascular risk factors (i.e., body-mass-index, blood pressure, insulin resistance, cholesterol), as well as functional disability in RA[63]. However, given that sedentary behaviour was defined as activities ≤1 MET in this study, conclusions could not be drawn concerning the relevance of common sedentary behaviours requiring 1–1.5 METS (e.g., sitting and reading a book or newspaper) for CV risk and other specific outcomes. Nevertheless, Yu et al. (2015) reported in a recent cross-sectional study, that accelerometer-assessed SB (defined as <100cpm/≤1.5 METS) was negatively related to cardiopulmonary fitness in RA[59].

Future research recommendations and directions:

Research to date suggests high levels of sedentariness in people living with RA, which appears to be a significant contributor to their disease burden. However, to further our understanding of SB and its health consequences in this patient group, a great deal of work that employs a more rigorous approach specific to RA is required.

Considering the methodological shortcomings and inconsistencies among past SB research in RA, we propose a standardisation of methodology that could include the following components: first, the definition of SB as advocated by the SBRN should be employed consistently across studies; second, a combination of self-report (e.g., diaries) and objective measures of SB should be utilised to effectively examine the multiple constituents of SITT; third, objective devices ought to include where possible, a measure of both posture and energy expenditure; fourth, studies employing accelerometry should utilise validated cut-off points commensurate with activities characterised by ≤1.5 METS in people living with RA. Where possible disease-state specific cut-points (e.g., early vs. established RA, active vs
inactive RA) should also be developed/validated to take into account inflammatory/metabolic variability observed within RA; fifth, SB accumulated during waking hours should be distinguished from time sleeping; sixth, there should be clarity about data collection protocols and analytical decisions employed (e.g., cut-off points/algorithms used).

On the basis of such recommendations, future research priorities in the field of SB in RA should include: first, validation of self-report instruments, and lab-based calibration/validation studies of objective devices for measurement of SB in RA – to include characterisation of the energy cost of common sedentary behaviours (i.e., activities undertaken whilst sitting and lying) and standing without ambulation; second, application of validated devices to enable accurate measurement of levels of SB in RA, including patterns of sedentary time accumulation as conceptualised by SITT; third, Studies designed specifically to examine the directionality (including bi-directionality) of links between SB, inflammation, physical and psychosocial health outcomes in RA – with particular emphasis on disease activity, rheumatoid cachexia, and cardiovascular risk profile. These should also examine whether associations with such health outcomes occur independently of levels of light, moderate and vigorous physical activity engagement.

We would like to emphasise that as yet, no studies have examined the implications of SB for psychological health and wellbeing in RA. This is perhaps due to the assumption that sedentary behaviour may contribute towards adverse health outcomes in these patients via physiological (e.g., inflammation) rather than psychological mechanisms. We therefore propose a parallel research agenda concentrated on investigating the contribution of sedentary behaviour to adverse psychological health outcomes in RA (e.g., depression, subjective vitality).
Conclusions

Sedentary behaviour has emerged as a major contributor to the risk of developing and the outcome of chronic disease independently of engagement in physical activity. Evidence indicates this is likely due to the heightened systemic inflammation resulting from high levels of sedentariness. The potential relevance of SB for health outcomes in RA is of obvious importance and notwithstanding methodological difficulties that can be resolved, should be investigated further. Such research may inform the development of effective sedentary behaviour change interventions, which are likely to improve health and enhance quality of life in people with RA.

Review criteria

This manuscripts cited in this review (Table 4) were found by searching the terms sedentary and rheumatoid arthritis in PubMed (up to January 2016). The search returned 55 manuscripts. An additional search with the terms sitting and rheumatoid arthritis returned a further 3 manuscripts (after cross-checking for duplicates). Abstracts and full texts were reviewed by the main author, to determine the definition and measurement of sedentary behaviour employed. Studies retained for inclusion in this review are those that defined sedentary behaviour as distinct from physical inactivity (i.e., a lack of purposeful/health enhancing physical activity above a moderate intensity), and operationalized sedentary behaviour in accordance with either low energy expenditure (i.e., \(\leq 1.5 \) or \(\leq 1 \) MET) or behaviours undertaken in a sitting or reclining posture. All procedures were in line with published guidelines for writing a narrative review [83].

Funding: No specific funding was received from any bodies in the public, commercial or not-for-profit sectors to carry out the work described in this manuscript.
Reference List

Hall DT, Ma JF, Marco SD, Gallouzi IE. Inducible nitric oxide synthase (iNOS) in muscle wasting syndrome, sarcopenia, and cachexia. Aging (Albany NY) 2011;3:702-715.

(64) Huffman KM, Pieper CF, Hall KS, St Clair EW, Kraus WE. Self-efficacy for exercise, more than disease-related factors, is associated with objectively assessed exercise time and sedentary behaviour in rheumatoid arthritis. Scand J Rheumatol 2015;44:106-110.

Figure 1. Sedentary behaviour vs. physical inactivity

Four distinct behavioural profiles representing different levels of engagement in sedentary behaviour, light physical activity and moderate-to-vigorous physical activity. Physically active: meeting guidelines for moderate-to-vigorous physical activity (children= 60 minutes x 7 days/week, adults= 30 minutes x 5 days/week). Physically inactive: absence of engagement in recommended levels of moderate-to-vigorous physical activity. Sedentary: the majority of waking time spent in activities ≤1.5 METS and a sitting or reclining posture.
Figure 2. Hypothesised sedentary behaviour-inflammation pathway in the context of RA

Proposed cyclic relationship between sedentary behaviour, local and systemic inflammation and the progression of RA outcomes. TNF-α: tumor necrosis factor alpha.
Typical activity behaviour

Key

<table>
<thead>
<tr>
<th>Sedentary</th>
<th>Physically inactive</th>
<th>Physically active</th>
</tr>
</thead>
</table>

Energy expenditure (METS)

1.0 (rest)
1.5
3

Sedentary behaviour
Light physical activity
Moderate-to-vigorous physical activity

‘Non-exercise’ behaviour
‘Exercise’ behaviour
Sedentary behaviour

Inflammation

Local

Immune cells (e.g., macrophage, T-Cell)

Inflammatory cytokines (e.g., TNF-α, IL-6, IL-1)

Rheumatoid Arthritis

Inflammation

Systemic

Inflammatory cytokines (e.g., TNF-α, IL-6, IL-1)

Liver

C-reactive protein

Fibrinogen

Heptoglobin

Serum amyloid A

↑ CVD risk

Cachexia

Fatigue

Depression

Pain
Table 1. Existing sedentary behaviour measurement methods: cost, ease of use and burden

<table>
<thead>
<tr>
<th>Approach</th>
<th>Type</th>
<th>Example</th>
<th>Cost</th>
<th>Ease of use</th>
<th>Participant burden</th>
<th>Researcher burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective</td>
<td>Questionnaires</td>
<td>IPAQ, MOST</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Diaries</td>
<td>Bouchard Physical Activity Record</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Objective</td>
<td>Accelerometers</td>
<td>Actigraph</td>
<td>+ +</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>Posture monitors</td>
<td>ActivPAL</td>
<td>+ +</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>Combined sensors</td>
<td>Sensewear Armband</td>
<td>+++</td>
<td>+</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td>Multi-site monitors</td>
<td>IDEEA monitor</td>
<td>+++</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

+: low; ++: moderate; +++: high; IPAQ: International Physical Activity Questionnaire; MOST: Measure of Older adults Sedentary Time; IDEEA: Intelligent Device for Energy Expenditure and Activity monitor.
Table 2: Reliability and validity of sedentary behaviour measurement methods

<table>
<thead>
<tr>
<th>Type of measure</th>
<th>Ability to measure SITT components</th>
<th>Validity and reliability for measuring SITT component (in the general population)</th>
<th>Ability to (objectively) assess SB</th>
<th>Sedentary activity</th>
<th>Posture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S_sIT</td>
<td>s1T</td>
<td>s1T</td>
<td>s1T</td>
<td>Reliability</td>
</tr>
<tr>
<td>Questionnaires</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>++/+ + + (higher for TV viewing only)</td>
</tr>
<tr>
<td>Diaries</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>No detailed information</td>
</tr>
<tr>
<td>Accelerometers</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>+ +/+ + + (≥ 5 - 7 days of monitoring at ≥ 10 hours/day)</td>
</tr>
<tr>
<td>Posture monitors</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>No detailed information</td>
</tr>
<tr>
<td>Combined sensors</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>No detailed information</td>
</tr>
<tr>
<td>Multi-site monitors</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>No detailed information</td>
</tr>
</tbody>
</table>

Y: yes; N: no; +: low; ++: moderate; +++: high; S_sIT: Sedentary behaviour frequency; s1T: interruptions; s1T: Time; s1T: Type; IPAQ: International Physical Activity Questionnaire; IDEEA: Intelligent Device for Energy Expenditure and Activity monitor; EE: energy expenditure.
<table>
<thead>
<tr>
<th>Type of measure</th>
<th>Measures used in RA</th>
<th>Validation study in RA</th>
<th>Number of studies</th>
<th>Criterion standard for validation</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questionnaires</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Questionnaires</td>
<td>YPAS</td>
<td>Y</td>
<td>2</td>
<td>Accelerometer (<100 cpm)</td>
<td>Underestimates sedentary Time</td>
</tr>
<tr>
<td></td>
<td>LTPA Level Questionnaire</td>
<td>N</td>
<td>1</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>PAS</td>
<td>N</td>
<td>1</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>IPAQ</td>
<td>Y</td>
<td>1</td>
<td>Accelerometer (<100 cpm)</td>
<td>Underestimates sedentary Time</td>
</tr>
<tr>
<td></td>
<td>7-day PARQ</td>
<td>N</td>
<td>2</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>PADS</td>
<td>N</td>
<td>1</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Diaries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diaries</td>
<td>None</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerometers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerometers</td>
<td>Actical</td>
<td>N</td>
<td>2</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Actigraph</td>
<td>N</td>
<td>3</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>RT3</td>
<td>N</td>
<td>1</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Posture monitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posture monitors</td>
<td>ActivPAL</td>
<td>Y</td>
<td>1</td>
<td>Direct observation</td>
<td>Underestimates sedentary Interruptions Valid for measurement of Sedentary behaviour frequency and Time</td>
</tr>
<tr>
<td>Combined sensors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined sensors</td>
<td>Sensewear armband</td>
<td>Y</td>
<td>1</td>
<td>EE assessed via indirect calorimetry</td>
<td>Underestimates sedentary Time</td>
</tr>
<tr>
<td>Multi-site monitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-site monitors</td>
<td>DAM monitor</td>
<td>N</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Y: yes; N: no; YPAS: Yale Physical Activity Survey; LTPA: Leisure Time Physical Activity; PAS: Physical Activity Survey; IPAQ: International Physical Activity Questionnaire; PARQ: Physical Activity Recall Questionnaire; PADS: Physical Activity Disability Survey; DAM: Dynaport Activities of Daily Living (monitor); cpm: counts per minute; EE: energy expenditure.
Table 4: Studies using self-report and objective measures to determine levels of sedentary behaviour in RA

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample size (N = RA patients)</th>
<th>Age, mean (SD)</th>
<th>Measurement of sedentary behaviour</th>
<th>Definition of sedentary behaviour</th>
<th>Variables derived</th>
<th>Levels of sedentary behaviour reported, mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-report studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilbert et al., 2015</td>
<td>N = 172</td>
<td>55.11 (13.91)</td>
<td>YPAS</td>
<td>Time spent sitting</td>
<td>% participants sitting for; <3, 3-6, 6-8 and >8 hours/day</td>
<td>53% reported >8 hours sitting time per day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Daily sitting time continuous; (physical activity hours + sleep hours) – 24 hours</td>
<td>13 ± 2.59 hours/day sitting time (780 ± 155.40 min/day)</td>
</tr>
<tr>
<td>Løppenthin et al., 2015</td>
<td>N = 43</td>
<td>60 (range, 21–88)</td>
<td>LTPA Level Questionnaire</td>
<td>Time spent primarily watching TV, reading books, other passive activities</td>
<td>Sitting time (hours/day)</td>
<td>4 hours/day sitting time (range, 3-5 hours)</td>
</tr>
<tr>
<td>Yu et al., 2015</td>
<td>N = 68</td>
<td>55.00 (13.00)</td>
<td>IPAQ</td>
<td>Time spent sitting</td>
<td>Sitting time (minutes/day)</td>
<td>290 ± 159 min/day sitting time (4.83 ± 2.65 hours/day)</td>
</tr>
<tr>
<td>Kramer et al., 2012</td>
<td>N = 152</td>
<td>63.00 (8.00)</td>
<td>7-day PARQ</td>
<td>Duration of TV viewing</td>
<td>TV viewing (hours/day)</td>
<td>2 hours/day TV viewing (range, 1 – 3 hours)</td>
</tr>
<tr>
<td>Giles et al., 2008</td>
<td>N = 197</td>
<td>59.40 (8.70)</td>
<td>7-day PARQ</td>
<td>Duration of TV viewing</td>
<td>TV (hours/day)</td>
<td>2.3 ± 1.6 hours/day TV viewing</td>
</tr>
<tr>
<td>Greene et al., 2006</td>
<td>N = 52</td>
<td>61.00 (14.50)</td>
<td>PADS</td>
<td>Time spent sitting/lying down</td>
<td>Time spent sitting/lying (hours/day)</td>
<td>5.6 ± 3.4 hours/day sitting/lying</td>
</tr>
<tr>
<td>Seminak et al., 2004</td>
<td>N = 185</td>
<td></td>
<td>YPAS</td>
<td>(On average, how many hours/day are you sitting or lying down, not counting when you sleep at night)</td>
<td>% participants reporting; Sitting for > 6 hours/day</td>
<td>48% reported sitting for >6 hours/day</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Standing without movement for >3 hours/day</td>
<td>75% reported standing without movement for >3 hours/day</td>
</tr>
<tr>
<td>Objective studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilbert et al., 2015</td>
<td>N = 172</td>
<td>55.11 (13.91)</td>
<td>GT3X accelerometer</td>
<td><100 cpm</td>
<td>Sedentary time (hours/day)</td>
<td>9.86 ± 1.38 hours/day sedentary time (591.60 ± 82.80 min/day)</td>
</tr>
<tr>
<td>Study</td>
<td>N</td>
<td>Mean (SD) or Median (Interquartile Range)</td>
<td>Device and Algorithm Description</td>
<td>Sedentary Time (min/day) including Sleep Time</td>
<td>Sedentary Time (% Waking Hours/day)</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------</td>
<td>--</td>
<td>----------------------------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Prioreschi et al., 2015</td>
<td>N = 29</td>
<td>Low bone mass 57.00 (12.00) Normal bone mass 51.00 (10.00)</td>
<td>Actical accelerometer ≤ 100 cpm</td>
<td>Sedentary time (% waking hours/day)</td>
<td>Between 65 ± 4 and 73 ± 2 % waking hours/day sedentary</td>
<td></td>
</tr>
<tr>
<td>Khoja et al., 2016</td>
<td>N = 98</td>
<td>58.00 (9.00)</td>
<td>Sensewear Armband Activities <1 MET</td>
<td>Sedentary time (min/day) (including sleep time)</td>
<td>589 min/day sedentary time (SD not reported in text) (9.8 hours/day)</td>
<td></td>
</tr>
<tr>
<td>Yu et al., 2015</td>
<td>N = 68</td>
<td>55.00 (13.00)</td>
<td>GT3X accelerometer (software algorithm not described)</td>
<td>Sedentary time (min/day) (including sleep time)</td>
<td>583.00 ± 98.00 min/day sedentary time (9.72 ± 1.63 hours/day)</td>
<td></td>
</tr>
<tr>
<td>Huffman et al., 2015</td>
<td>N = 41</td>
<td>55.00 (48, 64) (25th, 75th centile)</td>
<td>RT3 accelerometer <100 cpm</td>
<td>Sedentary time (minutes/day)</td>
<td>854.4 min/day sedentary time (SD not reported in text) (14.24 hours/day)</td>
<td></td>
</tr>
<tr>
<td>Prioreschi et al., 2013</td>
<td>N = 50</td>
<td>48.00 (13.00)</td>
<td>Actical accelerometer Activities <1 MET</td>
<td>Average counts spent in sedentary activity threshold (% waking hours/day)</td>
<td>71 ± 11% of waking time spent in sedentary activities</td>
<td></td>
</tr>
<tr>
<td>Prioreschi et al., 2014</td>
<td>N = 18</td>
<td>50.00 (14.00)</td>
<td>Actical accelerometer (software algorithm not described)</td>
<td>Average number of activity counts spent in sedentary activity threshold per day</td>
<td>428 ± 124 counts in sedentary activity per day</td>
<td></td>
</tr>
<tr>
<td>Rafferty et al., 2014</td>
<td>N = 19</td>
<td>51.80 (12.50)</td>
<td>ActivPAL</td>
<td>Actical software algorithms used and not described</td>
<td>Time spent sitting/lying (hours/day) (including sleep time)</td>
<td>18.83 ± 1.72 hours/day spent sitting/lying (1,130 min/day)</td>
</tr>
<tr>
<td>Munneke et al., 2001</td>
<td>N = 41</td>
<td></td>
<td>DAM monitor</td>
<td>Actical software algorithms used and not described</td>
<td>Time spent sitting (including sleep time) and being; non-active</td>
<td>30.5 ± 9.1% of time in non-active sitting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>active-with trunk movement</td>
<td>2.0 ± 1.1% of time in active sitting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Time spent lying (including sleep time)</td>
<td>42.1 ± 8.8% of time lying</td>
</tr>
</tbody>
</table>

YPAS: Yale Physical Activity Survey; LTPA: Leisure Time Physical Activity; PAS: Physical Activity Survey; IPAQ: International Physical Activity Questionnaire; PARQ: Physical Activity Recall Questionnaire; PADS: Physical Activity Disability Survey; METS: metabolic equivalents; DAM: Dynaport Activities of Daily Living (monitor); MET: metabolic equivalent; cpm: counts per minute.