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Abstract—this paper represents a new technique for building 

a relevance judgment list for information retrieval test collections 

without any human intervention. It is based on the number of 

occurrences of the documents in runs retrieved from several 

information retrieval systems and a distance based measure 

between the documents. The effectiveness of the technique is 

evaluated by computing the correlation between the ranking of 

the TREC systems using the original relevance judgment list 

(qrels) built by human assessors and the ranking obtained by 

using the newly generated qrels. 
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I.  INTRODUCTION  

Information retrieval is the process of retrieving relevant 

information to satisfy the user’s need which was expressed by 

formulating a query and submitting it to an information 

retrieval system. Given different systems, how can we 

determine which one performs best? When we implement new 

retrieval algorithms, how can we test their performance 

compared to other existing algorithms? We use test collections 

for this purpose. A test collection is a set of documents, a set 

of manually constructed topics, and a relevance judgments list 

(also called query based relevance sets, qrels) which is built by 

human assessors. This relevance judgment list shows the topic 

number, the document id and the document’s binary relevance 

to the topic, where “1” indicates relevance and “0” non-

relevance. 

This is known as the Cranfield paradigm, which was first 

started by Cleverdon in 1957[1]. It involves manual indexing 

for the documents, and assessing all documents from a 

database for relevance with respect to a finite set of topics.  

The Text REtrieval Conference (TREC) organized annually by 

NIST provides such a framework to allow larger-scale 

evaluations for text retrieval. TREC provide test collections, 

each with a relevance judgment list built by human assessors 

based on a pooling technique (Spärck Jones and van 

Rijsbergen) [2]. Each TREC test collection has 50 topics and a 

set of documents. All participating research groups are given 

these documents. Each group uses the topics provided and 

retrieves a ranked set of documents using their information 

retrieval system. They then submit their runs back to NIST. 

The researchers at NIST will then form a pool of documents of 

depth 100 for each topic, by collecting the top 100 documents 

from each run. Duplicate documents are then removed. Each 

document in the resulting pool is then judged by human 

assessor to determine its relevance. This forms the relevance 

judgment list or the query-based relevance sets (qrels). Any 

document not found in the pool is considered to be non-

relevant. Building the qrels is a major task and consumes a lot 

of time, resources and money. It becomes practically 

infeasible when the test collection is huge and contains 

millions of documents. This is why various researchers have 

worked to automate the generation of the qrels or build them 

with minimal human intervention. The Cranfield paradigm is 

still widely used mostly for academic and partially 

commercial system evaluation. It is also still important in 

traditional ad hoc retrieval both in specific tasks and for 

certain web queries, but Harman has spoken on possible future 

modifications [16]. 

In this paper, we devise a new methodology to build the set of 

qrels without any human intervention. The structure of the 

remainder of this paper is as follows: In section 2 we review 

the previous work done in this field. In section 3 we describe 

the experimental design for a new system of producing qrels 

completely automatically, and in section 4 we give the results 

of experiments which show that our new system outperforms 

the earlier systems which inspired it.  In section 5 we conclude 

with some ideas for future work. 

II. RELATED WORK 

 

Zobel [3] explained how it is possible to use the top retrieved 

documents to predict with some accuracy how many relevant 

documents can still be found further down the ranking, but this 

methodology was not tested. Interactive searching and judging 

proposed by Cormack et al [4] is an interactive search system 

that selects the documents to be judged. It uses Boolean query 

construction and ranks documents based on their lengths and 

the number of passages that satisfy the query. Search terms 

will be highlighted to help assessors in judging the documents. 

Searchers by this technique try to find as many relevant 

documents as possible for each of the topics included. The 

move-to-front (MTF) technique [4] directly improves the 
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TREC baseline pooling method since it selects different 

numbers of documents depending on the system performance. 

As opposed to TREC pooling, it examines the documents in 

order of their estimated likelihood of relevance. Soboroff et al. 

[5] proposed that manual relevance assessments could be 

replaced with random sampling from pooled documents. From 

the previous TREC results, they developed a model of how 

relevant documents occur in a pool. This was achieved by 

computing the average number of relevant documents found 

per topic in the pool, and the standard deviation. However, this 

information is not available in practice for systems not trained 

on TREC data. A related method was suggested by Aslam and 

Savell [6] who devised a measure for quantifying the 

similarity of the retrieval systems by assessing the similarity 

of their retrieval results. The use of this new measure 

evaluated system performance instead of system popularity, so 

that novel systems which produced very different sets of qrels 

to the others were not penalized. Nuray and Can [7] generated 

the relevance judgments using heuristics. They replicated the 

imperfect web environment and modified the original 

relevance judgment to suit the web situation. They used the 

pooling technique described earlier and then ranked the 

documents based on the similarity score of the vector space 

model. Carterette et al [8] linked the evaluation of an IR 

system using the Average Precision (AP) to the construction 

of test collections. After showing that AP is normally 

distributed over possible sets of relevance judgments, a degree 

of confidence in AP was estimated. This new way of looking 

at the evaluation metric led to a natural algorithm for selecting 

documents to judge. Efron’s method used query aspects [9], 

where each TREC topic was represented using manual and 

automatically generated “aspects”. The same information need 

might be represented by different aspects. Each manually 

derived aspect was considered as a query and the union of the 

top 100 documents retrieved for each topic was considered to 

be the set of “pseudo-qrels” or “aspect qrels”. Other 

techniques were an improvement to the pooling technique. In 

their experiments to build a test collection, Sanderson and 

Joho [10] obtained results which led them to conclude that it is 

possible to create a set of relevance judgment lists (RJL) from 

the run of a single effective IR system. However, their results 

do not provide as high a quality set of qrels as those formed 

using a combination of system pooling and query pooling as 

used in TREC.  

The power of constructing a set of information “nuggets” 

extracted from documents to build test collections was shown 

by Pavlu et al [11]. A nugget is an atomic unit of relevant 

information. It is a sentence or a paragraph that holds a 

relevant piece of information which leads to the document 

being judged as relevant. Rajput et al. [12] used an “Active 

Learning” principle to find more relevant documents once 

relevant nuggets are extracted, because a relevant document 

infers relevant information and relevant information leads to 

finding more relevant documents. 

 

III. EXPERIMENTAL DESIGN 

The technique used in this paper is inspired by both 
Rajagopal and Mollá techniques [14] [13] which are described 
in the following sections.  

A. Rajagopal’s technique 

 

Rajagopal[14] used two independent approaches to build 

pseudo relevance judgements: one which is completely 

automated does not require any human intervention and is 

based on a “cutoff percentage” of the number of documents to 

mark as relevant or non-relevant. The second is called “exact 

count” and it requires previous knowledge of the number of 

documents judged relevant by the human assessor. The results 

they obtained showed that the approach based on cutoff 

percentage gave better Kendall’s tau and Pearson correlation 

values between system rankings based on humanly-annotated 

qrels and machine-genrerated qrels. Since in this paper we are 

interested in completely automating the process of building 

relevance judgment lists, and the aim is to prove that we can 

suggest a new technique that can provide better correlation 

values, we will describe and compare our results against the 

“cutoff percentage” technique only. Rajagopal’s technique 

used the number of occurrences of a document in each system 

run to determine its relevancy, whether it is relevant or non-

relevant to a topic. The hypothesis made initially states the 

following: the higher the number of occurrences of a 

document in the pool of documents found relevant by a range 

of systems, the higher is the probability of this document 

being relevant. In their experiment, a variation of the TREC 

pooling technique was presented, since pseudo relevance 

judgments are built without any human assessors’ 

involvement. Cutoff percentages (>50% and >35%) of 

documents occurrences were studied. A pool depth of 100 was 

used. The steps followed for TREC-8 were: (1) Get the runs 

from all the systems, (2) pool with depth K (here K =100), (3) 

calculate the number of occurrences per document per topic, 

(4) order by the number of occurrences of documents per topic 

in descending order, (5) calculate the % values of these 

occurrences, therefore, for a total of 129 systems, if doc1 

occurred in 10 systems, the percentage value is about 7%, (6) 

set document relevancy based on the cutoff percentage. So if 

for topic 1 doc34 had a percentage value of 64%,, it will be 

considered relevant otherwise depending on the cutoff 

percentage chosen (50% or 35%) if it is below this cutoff, it 

will be considered non-relevant (7) Calculate MAP for all 

systems, rank them and compute the correlation. The results 

reported by Rajagopal are shown in Table 1: 

TABLE I.   

TREC-8  

(129 Systems) 

Kendall’s 

tau 
Pearson 

Harmonic Mean 

cutoff >50%  0.506 0.739 0.600 

cutoff >35%  0.515 0.736 0.605 

 
Table1: Kendall’s tau and Pearson correlation for MAP values for depth 100 
using different cutoff percentage for TREC-8 



A question that extends from the above experiments: does 

increasing the cutoff percentage provide better results? What 

will be the correlation obtained for cutoff percentages greater 

than 50%, such as 60% and 80%? The reason behind 

increasing the cutoff percentage is to minimize the error 

margin when judging documents as relevant and this is needed 

to expand the positive judgments using Mollá’s technique for 

measuring the similarity between the documents. A 

description of the distance based measure used to compare 

documents is described below. 

B. Mollá’s Technique  

Mollá [13] used a distance based measure to expand positive 

judgments only. The distance measure was based on the cosine 

similarity measure [15] between two document vectors. The 

distance measure is defined by: 

Distance_measure = 1 – cosine measure (1) 

The hypothesis was that relevant documents are at a close 

distance to each other, so they form a cluster. To prove it, he 

used different Terrier weighting models as surrogates for 

different retrieval systems. He measured the distance between 

some known qrels and the document retrieved. If it was less 

than a certain threshold, the document was considered relevant. 

He then evaluated the system rankings by using the original 

qrels, a subset of the qrels and then the same subset selected in 

the previous experiment with the expanded list of documents 

automatically judged relevant added. However, his method 

requires knowing a set of relevant documents a priori and then 

expanding only positive judgments.  

C. New Technique 

 

The new technique used in this paper does not require any 

human intervention and has no prior knowledge of the test 

collection’s original qrels. We used the TREC-8 test collection 

in our experiments and we tested using the 129 TREC 

systems. We followed first the same steps done by Rajagopal 

only now we chose different cutoff percentages (>=60% and 

>=80%). We select the documents that were retrieved by more 

than 60% or 80% of the systems. The purpose of increasing 

the cutoff percentage was to ensure having a high probability 

set of relevant documents. Because the set returned by a cutoff 

percentage of 80% contained more relevant documents, we 

used this set (called (S)) to find more relevant documents in 

the pool by using the similarity measure similarity in equation 

(1). For each document (di) in the pool of depth 100 created 

by all 129 systems, we measured the distance between (di) and 

each document in the cutoff set (S) formed for a topic i. We 

selected the closest pair of documents. Only when the distance 

between each pair was less than a threshold (ε) determined 

empirically, the document was marked relevant otherwise it 

was marked non-relevant. We evaluated our technique by 

computing the MAP values for each of the TREC systems and 

comparing the different rankings obtained when using the 

original qrels and the newly generated ones. For different 

values of (ε): 0.5, 0.4, 0.3, 0.28, 0.26, 0.2 and 0.15, the 

Pearson correlation showed better value for ε =0.2 while the 

Kendall’s tau is better for ε = 0.4. The correlation values for 

each experiment conducted are given in the next section.  

 

IV. RESULTS AND DISCUSSION 

 
Here we describe the evaluation process of the new 

technique. We compute the MAP value for each of the TREC 
systems using the original set of qrels that were built by human 
assessors and rank those systems. Then we compute the MAP 
based on the newly generated qrels and we rank the TREC 
systems. We measure the correlation between the two rankings 
by computing the Pearson and Kendall’s tau coefficients.  For 
the first experiment that follows Rajagopal’s cutoff percentage 
technique, the results from using cutoff percentages of 60% 
and 80% are shown below in table 2: 

TABLE II.   

TREC-8  

(129 Systems) 
Kendall’s tau Pearson 

Harmonic 

Mean  

cutoff >=60% 0.507 0.748 0.604 

cutoff >=80% 0.489 0.766 0.597 

 

Table 2: Kendall’s tau and Pearson coefficient for TREC-8 experiments using 
TREC systems based on cutoff percentages 

 

A cutoff percentage of 80% provides the best correlation value 

even though the Kendall’s tau coefficient is less by 2.6% than 

the 35% cutoff tested by Rajagopal. 

When using different cutoff percentages, we computed the 

percentage of actual relevant documents retrieved because in 

reality not all documents retrieved in the cutoff set were 

judged relevant by human assessors. Table 3 shows that with a 

cutoff percentage of 80%, almost 24% of the documents 

considered relevant were actually judged relevant by human 

assessors and therefore we used this set (S) in the remainder of 

the experiment to expand the first set of qrels generated and 

judge more documents as relevant using the distance measure 

in equation (1). 

TABLE III.   

 

Table 3: Percentage of actual relevant documents found in the set 
automatically judged for different cutoff percentages 
 

Relevant documents are at a close distance to each other, and 

in a sense they form a cluster [13]. Now that we have 

considered the documents retrieved by 80% of the systems as 

relevant, we tried to judge more documents in the pool of 

depth 100 as relevant based on the distance measure in (1). 

For each document retrieved in the pool, we computed the 

distance between this document and the set of documents that 

For cutoff >=50, 

percentage of actual 

relevant docs is: 

For cutoff >=60, 

percentage of actual 

relevant docs is: 

For cutoff >=80, 

percentage of actual 

relevant docs is: 

11.9 % 14.4% 23.9% 



belong to the cutoff set (S). For example, for topic 401, we 

have 5 documents that were retrieved by more than 80% of the 

systems and therefore marked as relevant: 

D={d1,d2,d3,d4,d5}, so for each remaining document (d) in 

the pool that was retrieved for topic 401, we computed the 

distance between (d) and each document in D. The pair of 

documents where the distance between the (d) and (d4) is the 

smallest is selected.  Now to judge whether (d) is relevant or 

not, we check the distance value obtained. If it is less than a 

distance threshold value ε (determined empirically), (d) will 

be marked as relevant otherwise it will be marked as non-

relevant. This process is repeated for each document in the 

pool retrieved for a topic and for each of the 50 topics. At the 

end, we will have a new set of qrels that was automatically 

built without any manual intervention.  

We tried different values for the distance threshold (ε) and we 

computed the Kendall’s tau and Pearson coefficients for 

evaluation (table 4). 

TABLE IV.   

Threshold 

(ε) 

Kendall’s 

tau 
Pearson 

Harmonic 

Mean 

0.5 0.4451 0.7017 0.5446 

0.4 0.5033 0.7654 0.6072 

0.3 0.5032 0.7804 0.6118 

0.2 0.4879 0.7814 0.6007 

0.15 0.4809 0.7786 0.5945 

 
Table 4: Kendall’s tau and Pearson coefficients for different values of the 

distance measure threshold 

 

The results show that the best Kendall’s tau value is obtained 

for ε=0.4 while the best Pearson value is for ε=0.2. But as an 

overall comparison between the results using the harmonic 

mean of the two measures, the best value is achieved for 

ε=0.3. In all cases, the Pearson coefficient shows better results 

than obtained when using different cutoff percentages only.  

We divided the TREC systems into three subsections based on 

the retrieval effectiveness values, the MAP value: the top third 

of the systems are considered to be good performing systems, 

the middle third are the moderate performing systems and the 

bottom third are the low performing systems. Grouping the 

systems into different groups is done to identify if our 

approaches perform better for a specific subsection of systems 

than the other. We then computed the Kendall’s tau and 

Pearson values for each subsection based on the results 

achieved by Rajagopal’s cutoff >50% approach, our cutoff 

>=80% and cutoff >=80% with ε=0.3 approaches. The results 

were very similar. The correlation between the low performing 

systems seems to be the best. The automatically generated 

qrels using a cutoff >=80% are most effective in 

discriminating among poorly performing systems. As for the 

other two subsections, the correlation falls below 0.5 (tables 5 

and 6).  The negative value obtained for good and moderately 

performing systems indicates that when the rank of one system 

increases in the original rank, it decreases in the rank obtained 

by the newly generated qrels or vice versa. This could be 

resulting from the fact that some systems are contributing to 

the new set of qrels automatically built based on the cutoff 

percentage or distance based measure while it was not 

contributing in forming the original qrels. Also in TREC when 

a document is retrieved from a noncontributing system, it is 

marked as non-relevant, but in our case we might have marked 

it as relevant because the number of occurrences is above the 

cutoff percentage defined. 

TABLE V.   

Methods 

Good 

Performing  

Systems 

Moderately 

Performing 

Systems 

Low 

Performing 

Systems 

Cutoff >50% (Rajagopal’s) -0.2313 0.3842 0.7799 

Cutoff >=80% -0.2546 0.3953 0.7928 

Cutoff >=80% and ε=0.3 -0.2174 0.3324 0.7773 

 

Table 5: Kendall’s tau correlation for 3 subsections for depth 100 using 

different cutoff percentages and the distance based approach for TREC-8 

TABLE VI.   

Methods 

Good 

Performing  

Systems 

Moderately 

Performing 

Systems 

Low 

Performing 

Systems 

Cutoff >50% (Rajagopal’s) -0.8111 0.5919 0.9169 

Cutoff >=80% -0.8088 0.5681 0.9483 

Cutoff >=80% and ε=0.3 -0.8128 0.5066 0.9435 

 

Table 6: Pearson correlation for 3 subsections for depth 100 using different 

cutoff percentages and the distance based approach for TREC-8 

 

As an overall value, we compute the harmonic means for 

Kendall’s tau and Pearson correlations for each subsection of 

the systems and the values obtained by our proposed cutoff 

>=80% approach and the one that expands the positive 

judgments based on the distance measure seem to provide 

better values. 

TABLE VII.   

Methods 

Good 

Performing  

Systems 

Moderately 

Performing 

Systems 

Low 

Performing 

Systems 

Cutoff >50% (Rajagopal’s) -0.3599 0.4659 0.8428 

Cutoff >=80% -0.3872 0.4662 0.8636 

Cutoff >=80% and ε=0.3 -0.3430 0.4014 0.8523 

 

Table 7: Harmonic means for 3 subsections for depth 100 using different 
cutoff percentages and the distance based approach for TREC-8 

 

To perform an intrinsic evaluation for the qrels automatically 

generated, we compute the precision and recall measures at 

different ranks (@5, @10, and @20… @ 100, @ 20 ... @ 

1000). The formula used for the precision metric is shown in 

(2) 

Precision = dAH / dA 

Where dAH is the number of documents judged relevant 

automatically by new technique and human judge and dA is the 



number of documents judged relevant automatically by new 

technique. 

As for the recall metric, the formula used is described in (3). 

 

Recall = dAH / dH   (3) 

 

Where dAH is also the number of documents judged relevant 

automatically by new technique and human judge and dH is the 

number of documents judged relevant by human assessors.  

We also computed the precision and recall for the qrels 
generated by Rajagopal’s technique for a cutoff percentage 
>50%.  Figure 1 plots the precision values at different ranks 
for Rajagopal’s technique using the 50% cutoff percentage 
and the new technique using a distance threshold of 0.2. As it 
can be seen our technique outperforms the values obtained by 
Rajagopal’s at almost every rank except at rank 5 where the 
precision is really close (0.1 – Rajagopal and 0.08 using the 
new technique).  For the recall, the cutoff of 50% scores better 
recall values than our technique using a distance threshold of 
0.2. But if we increase the distance threshold to 0.5, our 
method can achieve similar or even better scores at some 
ranks as the plot in Figure 2 shows. 

 

 

Fig. 1. Precision metric at different ranks for both techniques: the one using a 

cutoff percentage 50 and the new proposed technique using a distance 

threshold of 0.2 

 

Fig. 2. Recall metric at different ranks for techniques: the one using a cutoff 

percentage 50 and the new proposed technique using a distance threshold of 

0.2 and of 0.5. 

 In conclusion, the technique we propose in this paper can 

provide a set of qrels which correlates better (compared with 

the earlier systems) with the ones formed by humans than 

using a cutoff percentage based technique and when 

performing both the intrinsic evaluation (recall and precision 

of the discovered document sets) and the extrinsic (ability to 

rank systems compared with the original TREC documents), 

we achieve values for different distance threshold. Therefore, 

this method allows us to reduce cost and time when building 

test collections for system evaluation. 

V. CONCLUSION 

In this paper, we used a combination of pooling retrieved 
documents and clustering based on the distance between them 
in the vector space model to build a set of relevance judgments 
or qrels for a test collection without any human intervention. 
The approach we use allows expanding the set of qrels based 
on a distance measure between the documents. The technique 
is independent of the test collection type so this might guide us 
towards new experiments in which we can built a set of qrels 
for non-TREC test collections and it will be interesting to study 
its use with non-English test collections.  
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