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Abstract 

This paper presents a general solution for active earth pressure acting on a vertical retaining wall with 

a drainage system along the soil-structure interface. The backfill has a horizontal surface and is 

composed of cohesionless and fully saturated sand with anisotropic permeability along the    

vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the 

retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure 

acting on the retaining walls, increasing the probability of instability. In this paper, an analytical 

solution to the Laplace differential governing equation is presented for seepage problems considering 

anisotropic permeability based on Fourier series expansion method. A good correlation is observed 

between this and the seepage forces along a planar surface generated via finite element analysis. The 

active earth pressure is calculated using Coulomb’s earth pressure theory based on the calculated 

pore water pressures. The obtained solutions can be degenerated into Coulomb’s formula when no 

seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in 

seepage flow on the distribution of active earth pressure behind the wall is conducted by varying 

ratios of permeability coefficients in the vertical and horizontal directions, showing that anisotropic 

seepage flow has a prominent impact on active earth pressure distribution. Other factors such as 

effective internal friction angle of soils and soil/wall friction conditions are also considered.  

Keywords: active earth pressure; seepage; anisotropic permeability; retaining wall; Fourier series 

expansion; cohesionless soils 

Introduction 

Natural forces, like water, snow and wind, often change the topography in plain and mountain areas, 

creating unstable slopes and thus resulting in severe casualties and destructions, economic losses, 

and environmental damage (Budhu 2011; Ouyang et al. 2013), which demonstrates that the stability 

analyses of slopes and geo-structures are essential in geotechnical design. Retaining walls are 

structures commonly built to reinforce and provide stability for slopes, embankments, and other 

earthworks (Choudhury and Ahmad 2007), and have been recognized as one of the most common 

geo-structures which have considerable flexibility against outburst loads and are less sensitive to 

settlement (Ghanbari and Taheri 2012).  

In practical design, the earth pressure acting on the wall due to the backfill is a major concern, and 

thus it is of vital importance to calculate the thrust on the wall accurately allowing the assessment of 

the walls safety during its operation period. Three groups of methods for computing active earth 

pressure are commonly used, including limit equilibrium method (Sabzevari and Ghahramani 1972; 



 

Motta 1994), limit analysis method (Soubra and Macuh 2002; Yang 2007), and slip line method (Chen 

and Li 1998; Cheng 2003; Liu and Wang 2008). The forces exerted on the wall could be obtained by 

either Coulomb or Rankine earth pressure theory based on limit equilibrium analysis. Historically, 

Coulomb pioneered the investigation of lateral earth pressure on the retaining wall by assuming a 

plane failure surface under limit equilibrium conditions (Coulomb 1776). Various developments 

rooted in Coulomb earth pressure theory have been reported considering more general ground and 

loading conditions, for examples in recent years, surcharge loading (Motta 1994; Greco 2005), seismic 

effects (Wang et al. 2008a; Ahmad 2013; Brandenberg et al. 2015), cohesive-frictional backfill 

(Ahmadabadi and Ghanbari 2009; Chen 2014; Xu 2015), and different slip surfaces (Li and Liu 2010; 

Ouyang et al. 2013; Patki et al. 2015). 

Seepage flow through the backfill may affect the stability of the retaining wall. Consensus has been 

reached that the laminar seepage dominates in most natural flow situations (Harr, 1962). The 

governing equation for the seepage flow can thus be simplified as a two-dimensional Laplace 

equation with prescribed boundary conditions. Given the difficulties in solving this equation 

analytically, numerical methods are commonly employed, including the finite difference method 

(Soubra et al. 1999; Benmebarek et al. 2006), finite element method (Wang and Cheung 2001; 

Helwany 2007), and boundary element method (Barros and Santos 2012; Ai and Hu 2015). However, 

analytical/semi-analytical procedures are still available for the 2-D Laplace equation under certain 

circumstances (Banejee and Muleshkov 1992; Wang et al. 2012). For a vertical retaining wall with a 

drainage system along the soil-structure interface, Barros (2006) proposed an analytical method to 

solve the seepage problem. Wang et al. (2008b) reviewed the Coulomb-type active earth pressure 

acting on a retaining wall under varying drainage conditions. The effect of saturation conditions of the 

backfill has also been assessed for practical applications (Santos and Barros 2015). Apart from that, 

analytical/semi-analytical methods are also preferably applied to solve the seepage flow acting on 

inclined walls with sloping backfills (Soubra and Macuh 2002) and caisson quay walls (Dakoulas and 

Gazetas 2008). However, the effect of anisotropic seepage flow due to different permeability 

coefficients in vertical and horizontal directions is rarely considered in the calculation of earth 

pressure. 

The permeability coefficient is the most significant factor affecting the seepage field (Budhu 2011). 

Most backfills of retaining structures are formed through a sedimentation process and display some 

degree of anisotropy of permeability, due to their deposition process and stress conditions (Jeng et al. 

2001; Ai and Wu 2009; Rafiezadeh and Ashtiani 2014). Field measurements reveal that the 

permeability in the horizontal direction could be several times that of the vertical direction (Kenney 

1963; Head 1988; Jeng et al. 2001; Hazelton and Murphy 2007). Zhang et al. (2015) reported that 

anisotropic soil permeability can significantly affect the distribution of pore water pressure and earth 

pressure along tunnel working surfaces and linings, indicating that the existing assumption of 

isotropic soil permeability is inadequate for calculating the forces and deformation of geo-structures. 



 

Consequently, there is a critical need to develop alternative methods for accurately computing the 

seepage force and active earth pressure considering anisotropic permeability coefficients for the 

backfill. 

The present paper aims to propose an analytical procedure for anisotropic seepage problems based 

on the Fourier series expansion method. In this framework, the ratio of permeability coefficients for 

the vertical and horizontal directions is used to calculate the distribution of pore water pressure due 

to anisotropic seepage flow. Comparison of the analytical seepage forces along a planar surface with 

finite element results shows satisfactory agreement. The solution is then applied to calculating the 

active earth pressure on a smooth wall based on Coulomb’s earth pressure theory. Parametric studies 

on the anisotropic coefficient of permeability demonstrate that anisotropic seepage flow has a 

prominent impact on the active earth pressure distribution. Parametric study of internal friction angle 

of soils and soil/wall friction is also presented to show its impact on the coefficients of active earth 

pressure.  

Solution to anisotropic seepage flow 

Laplace differential equation 

In the present study, a steady-state hydraulic head field around the retaining wall assuming Darcy’s 

law with anisotropic permeability is prescribed. The Seepage analysis is carried out to determine the 

two-dimensional distribution of the total head h(x,z), which satisfies the following Laplace differential 

equation (Harr, 1962), 
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where kx, kz are coefficients of permeability in the horizontal and vertical directions, respectively. For 

an isotropic soil with kx=kz, Eq. (1) can be reduced to 
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In the sedimentary deposits as well as backfills behind the retaining walls, there is a consistent 

tendency for the horizontal permeability coefficient to be greater than the vertical with kx/kz > 1 

(Taylor 1948; Rafiezadeh and Ashtiani 2014). The coordination transformation technique can be 

applied to Eq. (2), which is then converted into the same format as Eq. (1), by the following 

transformation rule, 

z xx' x k k                                     (3) 

This yields the following Laplace equation in x’-z plane 
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It is noted that if the solution to Eq. (2) is known, the same solution can also be applied to Eq. (4) by 

invoking the transformation rule expressed in Eq. (3). 

Total head h(x,z) 

The case being analysed here is illustrated in Fig. 1, where a vertical retaining wall supports the 

saturated cohesionless backfill with seepage flow originating from a continuous source on the 

horizontal surface. The retaining wall is provided with a drainage system along the soil-wall interface 

and the layer beneath the wall. Also, the horizontal surface at z=0 is an impervious layer, as seen in 

Fig. 1. Based on Fourier series expansion method, Barros (2006) obtained a solution to the Laplace 

equation for an isotropic soil whose permeability coefficient is uniformly distributed in space. 

However, the solution could not be used for anisotropic seepage cases. By employing the coordinate 

transformation technique described above, the solution to Eq. (4) in the new coordinate system can 

then be expressed as 
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To obtain the total head h(x,z) in the original coordinate system, the ratio of permeability coefficient ξ 

is introduced and is defined as 

z xk k                                        (7) 

Substituting the ratio ξ into Eq. (5), the total head h(x,z) can be written into 
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Then, Eq. (8) is used to calculate the pore water pressure u(x,z) at any point inside the soil mass by the 

following equation, 
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where γw is the unit weight of water. According to Darcy’s law, the horizontal component of the 

seepage velocity along the soil/structure interface can be expressed as 
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Therefore, the total water flow Q can be calculated by the following integration 
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where G=0.915966…, known as Catalan’s constant (Abramowitz & Stegun, 1972; Barros, 2006). Eq. 

(11) implies that the total water flow Q has a linear relationship with the horizontal coefficient of 

permeability kx, the ratio of permeability coefficient ξ and the total head H. 

It should be pointed out that derived seepage velocity and the total flow can only be used under 

laminar flow condition, which is valid for most natural flow situations. When the velocity increases, 

the flow pattern will become turbulent beyond the range of laminar flow, and a non-linear 

relationship between the velocity and the hydraulic gradient should be replaced when calculating the 

total water flow (Harr, 1962). 

FEM validation 

In order to evaluate the reliability of the solution to the pore water pressure u(x, z), validations were 

performed using a commercial FEM software ABAQUS (ABAQUS, 2010). 

Consider a vertical wall with the height H=5m, supported by a fully saturated cohesionless backfill in 

Fig. 2, in which the soil-wall interface is provided with a drainage system that collects the percolating 

water through the soil mass. The seepage is assumed to be anisotropic with ξ=0.5 and three cases 

with inclination angles θ= 30°, 45° and 60° are investigated. The pore water pressure distribution 

along each surface is calculated by both the proposed formulas and the FEM, as given in Fig. 3.  

It is noted that numerical implementation of Eq. (8) involves a bounding error on h(0, 0) when the 

infinite series is truncated at a fairly few terms. However, when the Fourier series are truncated at 

100 terms, the bounding error will be convergent to negligibly small value. It can be seen from Fig. 3 

that the analytical solutions based on proposed formulas agree well with FEM results.  

Active earth pressure on smooth wall 

Active earth pressure considering seepage 

In this paper, the backfill behind the retaining wall is considered as homogenous and obeys the Mohr-



 

Coulomb failure criterion. The evaluation of the earth thrust, which is the resultant of earth pressures 

along the soil-wall interface, is performed through the equilibrium analysis of a soil wedge delimited 

by the wall face and a trial failure surface. Based on the Coulomb’s theory, the failure surface is 

assumed to be planar. The soil wedge is treated as a rigid body and the forces acting along its 

boundaries are shown in Fig. 4. 

The pore water pressure force U in an isotropic soil can be directly calculated by integrating the pore 

water pressure u along the failure surface, as given by Barros (2006) and Barros & Santos (2012). For 

cases with anisotropic seepage, the ratio of permeability coefficient is involved; therefore the pore 

water pressure force U is given by 
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The maximum value of Pa as a function of a determines the critical failure surface, expressed as 
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where Kas is the coefficient of active earth pressure with seepage, ω=γw/γsat is the saturated weight 

ratio and tan '  is the effective internal friction coefficient of soils. 

Based on Eq. (15), the interrelation between the coefficient of active earth pressure Kas, effective 

internal friction angle φ
’
 and ratio of permeability coefficient ξ is illustrated in Fig. 5. According to 

Barros (2006), the influence of the saturated weight ratio ω is relatively small, thus ω can be taken as 

0.5 for practical purposes. It is seen from Fig. 5 that Kas is greater than Coulomb’s coefficients Ka, 

indicating that the calculation of active earth pressure will be un-conservative if the seepage effect is 

not considered. The discrepancy is highest for the isotropic case with ξ=1.0, and for anisotropic 

seepage flow with any given ξ<1, the distribution curve is bounded by these two limiting cases. It is 

also noted that the coefficient of active earth pressure falls with the internal friction angle φ
’ 
for both 

with and without seepage. Comparison between Ka and Kas with isotropic flow indicates that the 



 

discrepancy becomes acuter when φ
’ 
increases, with only 10% when φ

’
=10

o
 and up to 40% when 

φ
’
=45

o
.  

To further consider the effect of seepage flow on the earth pressure, Fig. 6 presents the relationship 

between the ratio Kas/Ka and tanφ’, showing almost linear trend for any given permeability coefficient 

ratio ξ. However, the gradient of the trend increases with ξ value, with ξ=1 of isotropic seepage flow 

being the steepest. 

A linear relationship between Kas/Ka and tanφ
’
 can be expressed into, 

 as a 1 tanK K '                                 (16) 

where λ is the gradient of the fitting line. Given that λ is dependent on ξ, the linear regression shown 

in Fig. 6 demonstrates good agreement with calculated results. The λ values for different ξ are 

tabulated in Table 1 and a linear regression equation is also obtained between λ and ξ (shown in Fig. 

7), expressed as 

0.457 0.015                                      (17) 

Effects of permeability coefficient ratio 

In above study, we assume that the maximum permeability is in the horizontal direction, thus the 

ratio of permeability coefficient ξ varies between 0 and 1. However, if there is no horizontal seepage, 

i.e. ξwith vertical seepage only, the relationship between the Kas/ Ka ratio and ξ will be nonlinear 

according to Eqs. (13) and (15). The coefficient of active earth pressure with seepage Kas will be more 

than three times Coulomb’s coefficient Ka when tanφ’=1.0, as shown in Fig. 8. 

Another special case of ξ=0 is that only horizontal seepage exists in the soil. The total water flow Q is 

zero according to Eqs. (10) and (11). Based on Eqs. (13) and (15), Kas can be simplified as 
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Thus the peak value of Kas(0) can be obtained, 
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It can be easily seen that the Eq. (20) is Coulomb’s formula, indicating that the latter is a special case 

of the formulas proposed in this study without seepage effect. This is because no vertical seepage 

occurs when ξ=0 (kz=0), and the horizontal seepage velocity along the soil/structure interface is also 

vanishing as calculated by Eq. (10), leading to only hydrostatic condition exists as concerned by 

Coulomb’s theory. 

Active earth pressure distribution 

According to Coulomb’s theory, the active earth pressure is linearly distributed against the depth 

below the ground surface if the backfill is a uniform soil. Now we will evaluate the distribution of 

active earth pressure if the seepage exists inside the backfill. To obtain the correct pressure 

distribution with seepage flow, the soil inside the critical wedge is supposed to be in plastic limit 

equilibrium and partial forces acting on local backfill behind the retaining wall are calculated, as 

shown in Fig. 9. 

The pore water pressure along a portion bH (b<1) can be expressed as 
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Using the force equilibrium condition, the partial coefficient of active earth pressure can be obtained, 
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According to Eq. (24), K
*

as(b) can be plotted against portion parameter b at different ratios of 

permeability coefficient ξ. As shown in Fig. 10, K
*

as(b) increases with b for any given ξ, and Barros 

(2006) used a linear regression line to estimate the relationship between K
*

as(b) and b for ξ=1. For 

simplicity, the linear regression could be also extended to anisotropic seepage flow for ξ < 1, as 

follows.  
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Thus the active earth pressure on the wall can be expressed as 
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For a vertical wall with height H=10m, the saturated unit weight of soil γsat=20kN/m
3
 and its effective 

internal friction angle φ
’
=30

o
, the active earth pressure pas with different ξ can be obtained using 

equation (26). Considering non-dimensional quantities, the active earth pressure pas is presented as 

pas’=pas/γsatH, and the wall height is expressed by portion parameter b. As shown in Fig. 11, p’as shows 

a parabolic distribution along the wall. The linear distribution of Coulomb’s earth pressure pa is also 

plotted using the same parameters, so as to directly signify the effects of the anisotropic seepage on 

the earth pressure. In the case of ξ=1.0, pas is more than 50% greater than pa calculated by Coulomb’s 

formula at the base of the wall. 

Active earth pressure on frictional wall 

It is noted that the soil/wall interface is rough in practical engineering, and thus the interface friction 

angle δ could be introduced in the calculation of Kas. Based on the method proposed by Barros (2006), 

the coefficient of active earth pressure with anisotropic seepage Kas is then given by 
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where * tan  is the coefficient of soil/wall friction. 

Fig. 12 illustrates the variation of Kas with φ
’ 

with varying soil/wall friction angle δ, considering 

isotropic seepage flow only (ξ=1.0). It is seen that the relationship between Kas and φ
’
 is related to δ. 

The increase in δ causes Kas to decrease when φ
’
 is relatively small, though the difference is not very 

significant. For the case of δ=φ
’
, with the increasing internal friction angle φ

’
, a diverging trend is 

observed between the results of δ=φ
’
 and δ=0; The maximum percentage difference for which being 

no more than 16% for δ=φ’ with φ’=45°. The existence of soil/wall friction may not definitely decrease 

the active earth thrust, but it reduces the effect of the effective friction angle φ’. Fig. 13 shows Kas 

values for different ratio of permeability coefficient ξ with δ=0.5φ’. The relationship between Kas and 

φ
’
 for frictional wall is similar to that for smooth wall presented in Fig. 5. Because of the relatively 

small discrepancy of the active earth thrust between the smooth and frictional cases, the effects of δ 

can be neglected and Eq. (15) can be adopted for simplicity in practical applications.  

Conclusions 

This paper presents an analytical procedure to calculate the active earth pressure acting on a 

retaining wall, considering the seepage flow through a cohesionless backfill. The focus of this paper is 

placed on the effect of anisotropic seepage flow on the distribution of earth pressure, which is 

compared with solutions based on the traditional Coulomb’s earth pressure theory. The following 



 

conclusions can be summarized. 

1) Using the Fourier series expansion method and coordinate transformation technique, the 

seepage problem can be analytically solved under the boundary condition above and the pore 

water pressure distribution within the backfill can then be obtained. The analytical results appear 

to show excellent agreement with the numerical results by FE analyses.  

2) Coulomb-type limit equilibrium analysis is employed to calculate the active earth pressure 

integrated with the pore water pressure due to the seepage flow in the backfill. The coefficient of 

active earth pressure Kas is found to be influenced by the ratio of permeability coefficient ξ. The 

variation of Kas with effective friction angle φ
’
 is bounded by two limiting cases: i.e. without 

seepage and isotropic seepage flow only. The active earth pressure increases under seepage flow 

conditions, such that the calculation is un-conservative if the seepage effect is not considered. 

3) A linear trend is presented between Kas/Ka and tanφ
’
 for a range of permeability coefficient ratios 

ξ varying from 0 to 1. The gradient of the trend increases with ξ value, with ξ=1 isotropic seepage 

flow is the steepest. However, if no horizontal seepage occurs, i.e. ξ , with vertical seepage 

only, the relationship between Kas/ Ka ratio and ξ becomes nonlinear. 

4) When ξ=0 no seepage occurs in the backfill, the formula of Kas degenerates to Coulomb’s Ka, 

implying that the Coulomb’s theory for active earth pressure is a special case of the proposed 

solutions. 

5) Analysis of a partial thrust wedge indicates that the effect of water seepage leads to a parabolic 

earth pressure distribution along the wall face. The partial coefficient of active earth pressure 

K
*

as(b) is linearly related to the portion ratio b and increases with the ratio of permeability 

coefficient ξ. In the case of ξ=1.0, γsat=20kN/m
3
 and φ

’
=30

o
, pas is more than 50% greater than pa 

calculated by Coulomb’s formula at the base of the wall. 

6) When friction exists on the soil/wall interface, the Kas value varies little with δ and the difference 

can be ignored, thus the variation style of Kas with φ
’
 for wall friction is similar to that for a 

smooth wall. Moreover, the existence of soil/wall friction may not always decrease the active 

earth thrust, but it reduces the effect of effective friction angle φ’ when δ approaches φ
’
.  

In addition, when there exists a surcharge load on the surface of the backfill, the water seepage 

solution is still applicable, but the active earth pressure will also depend on its magnitude. For more 

complex ground conditions, such as a non-level ground surface, multi-layered soil, and inclined 

layered soil. Further analytical/semi-analytical work will be conducted to obtain the distribution of 

pore water pressure and effects of the soil interface such that the calculation method can be modified 

to apply to more general conditions. Last but not least, the proposed formulations are derived based 



 

on the idealised boundary and drainage conditions, which might be varied from the field conditions in 

practical applications. Great cautions must be taken when they are applied in practical designs, by 

matching the conditions in the analytical studies.  

List of the symbols: 

H height of retaining wall 

h total water head 

γ unit weight of soil 

γw unit weight of water 

γsat unit weight of saturated soil 

φ
’
 effective friction angle 

δ soil/wall friction angle 

kx and kz 
coefficients of permeability in the horizontal and vertical directions 

respectively 

ξ ratio of permeability coefficient 

m number of term in Fourier series 

M function of m, (2m+1)π/2 

u pore water pressure 

U (U*) pore water pressure force (partial) 

U ( U *) coefficient of pore water pressure force (partial) 

v seepage velocity 

Q total water flow 

G Catalan’s constant 

N (N*) effective normal force acting on the failure plane (partial) 

T (T*) tangential force acting on the failure plane (partial) 

W(W*) saturated wedge weight (partial) 

ϑ inclination angle of failure surface 

a cotangent value of inclination angle of failure surface 

Pa(Pa *) active earth force (partial) 

pas active earth pressure 

pas’ non-dimensional active earth pressure 

Kas (K
*

as) coefficient of active earth pressure with seepage (partial) 

Ka Coulomb’s coefficient of active earth pressure 

ω saturated weight ratio 

μ effective internal friction coefficient of soils 

μ
*
 coefficient of soil/wall friction 

λ gradient of the linear curve (Kas/Ka and tanφ’) 

b portion parameter 
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Table 1 Relationship between λ and ξ values 

Ratio of permeability coefficient (ξ) 0.2 0.5 0.8 1.0 

Gradient of the ratio of Kas / Ka (λ) 0.08 0.21 0.35 0.44 

 

 
Fig. 1 Boundary conditions of seepage problem 

 

Fig. 2 Pore water pressure distribution along three specific surfaces 
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Fig. 3 Comparison of results between analytical solutions and FEM 
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Fig. 4 Forces acting on the retaining wall and free-body diagram 
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Fig. 5 Effects of φ’ on coefficients of active earth pressure 
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Fig. 6 Seepage flow effect with different tanφ’ values and fitting curves 
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Fig. 7 Linear regression curve between λ and ξ 
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Fig. 8 Kas/Ka for special cases of seepage flow  

 
Fig. 9 Partial forces acting on the retaining wall 
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Fig. 10 K*

as(b) against portion parameter b for different ξ values  
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Fig. 11 Active earth pressure distribution along the wall 

10 20 30 40 50
0.2

0.4

0.6

0.8

K
as



 =0

 =1/3

 =1/2

 =2/3

=

 
Fig. 12 Effects of φ’ and δ on coefficient of active earth pressure Kas 
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Fig. 13 Effects of φ’ on coefficient of active earth pressure Kas (δ=0.5φ’) 

 


	Main text_R3 - 副本
	Tables_and_figures

