
IMPLEMENTATION OF VRML AND JAVA FOR STORY
VISUALIZATION TASKS

X, Zeng, Q. H. Mehdi and N. E. Gough
Games Simulation and AI (GSAI) Centre, RIATec

University of Wolverhampton, Wolverhampton, WV1 1EQ, UK
E-Mail: x.zeng@wlv.ac.uk

KEYWORDS

Story visualisation, VRML, Java, External
Authoring Interface, XML

Abstract

VRML (Virtual Reality Modeling Language) is a
high level graphic language for describing 3D
virtual objects and worlds on Internet. The paper
considers the implementation of VRML and Java
for story visualization tasks. It focuses on creating
and manipulating the properties of 3D virtual
objects by using natural language input. We first
explore the potential of the binding between
VRML and Java technologies for generating the
interactive virtual worlds. We then investigate the
possibilities and limitations of these methods.
Finally, we present an inside look into our Story
Visualiser graphic engine, discussing its internal
architecture and some of the insights of Java, XML
and VRML technology we have gained during its
development.

INTRODUCTION

The development of interactive 3D applications is a
difficult task. Unlike OpenGL and Direct3D, which
are high performance graphic techniques with low-
level functionality libraries that can be directly
used for rendering, VRML, X3D and Java3d
higher-level graphic techniques are based on scene
graphs for representing a 3D interactive scene on
the Web. The scene and other visual elements are
described in a hierarchical structure. Apart from the
rendering of a scene graph the interaction of the
user with a scene graph is an important part of a 3D
application (Wetering 2001). VRML is the ISO
standard and has been widely accepted as a central
metaphor for presentation, visualization and
simulation purposes. It already has extensive usage
in medicine, engineering and scientific
visualization, entertainment and education. One of
the strengths of VRML is it can provide
interactivity in real time and there is not an
excessive rendering delay. Another powerful
feature of VRML is its easy extensibility and
flexibility to add new node types and capabilities to

the base language (Ames et al 1997; McCarthy and
Descartes 1998) The VRML Specification defines
a set of 54 built-in nodes that not only define the
contents of a virtual world, but also dynamically
change their properties using event sending and
processing.

The work described here is part of ongoing
research into a 3D story visualization authoring
system (Zeng et al. 2002, 2003; Mehdi et al. 2003).
Story based natural language was used as the
primary input source in this system to construct a
3D virtual environment (3DVE). The natural
language processing (NLP) and 3D graphic
presentation techniques were integrated to allow
construction and manipulation of a VRML-based
scene graph in real time. In this paper, we explore
the potential of the binding between VRML and
Java technologies for generating the interactive
virtual worlds. We also investigate the possibilities
and limitations of these methods and focus on how
to integrate Java, VRML and XML technologies to
construct our graphic representation system.

DIFFERENT WAYS OF INTERACTION
BETWEEN VRML AND JAVA

The universal acceptance of VRML as the world's
first widely used non-proprietary file format for the
deployment of behaviour-rich, real-time 3D
applications has profound implications for how we
envision information (Marrin et al 1997b). But
VRML is very limited in terms of interactivity and
it is not a general purpose programming language,
and Java is not a 3D presentation language.
However both were designed as web technologies
and serve different goals. While Java has the
ability to access VRML worlds and has
dramatically changed the nature of the VRML
itself while enriching and deepening the meaning
of the data it encapsulates. The VRML and Java
link provides a standardized, portable and platform
independent way to render dynamic, interactive 3D
scenes across the Internet (Brutzman 1998). For the
majority of today's web projects, the marriage of
Java and VRML provides the perfect solution
(Marrin et al 1997b; Lea et al 1996). There are two
popular approaches to using Java to extend VRML

mailto:x.zeng@wlv.ac.uk
in4243
122

world: one is internal Java Script Authoring
Interface (JSAI) and the other is External
Authoring Interface (EAI).

Java Script Authoring Interface

A VRML file consists of nodes that mimic real-
world objects and concepts such as various
geometries and material descriptions etc. Script
nodes defined within the VRML file are used to
program more complex behaviour for a VRML
scene. A node can signify or receive events from
the user or other nodes from the scene and effect
changes in the scene by using ROUTE to send
events. The script is the way VRML communicates
with outside world, encapsulating the Java code
and providing naming conventions for
interconnecting Java variables with field values in
the scene. Program scripts are miniature
applications that contain the logic and interfaced
Java classes import the vrml.*; vrml.field.* and
vrml.node.* class libraries to provide type
conversion between Java and VRML. In this way,
we can establish a link between a VRML scene and
a Java application by making a handle to a
Java.class file in a script node.

In this approach, the SAI provides a suite of classes
and methods that enable Java to access its interface
Fields and EventOuts, converting between data
types and initialise the Java program and to
respond to the events when the VRML browser
run. In spite of its strengths, JSAI is unable to link
with external data because it runs entirely within its
plug-ins environment, a universe unto itself (Pesce
1997). As Kimen (1997) claimed: “VRML is- Java
does- and the EAI can help”.

External Authoring Interface

The EAI is a set of language-independent bindings
that provides a conceptual interface between
VRML scenes and an external environment. The
virtual scene can be controlled via external
programs or applets in the case of a web browser
hosting the VRML browser. A typical web
application consists of VRML browser window and
additional controls in a Java applet on a same
HTML page. The EAI not only allows
manipulation all of the entities that internal scripts
can modify. The true power of EAI is in the
development of applications that incorporate
VRML as only one of the elements in a
presentation (Marrin et al 1997a). The creation of
custom GUIs, the linking of VRML representations
to external data, and even the possibility of multi-
user interaction are all made possible in part
because of the EAI. These are exactly the types of
applications that developers have always wanted
from VRML (Larsson 1999). The role and use of

EAI lies in bridging and linking those Java
applications to the 3D VRML scene. By using EAI
to bind the data in the Java applet to the VRML
world, developers are able to create a compelling
cost efficient, cross-platform solution.

EAI firstly creates an object reference to the
browser, using the methods of that object to locate
various nodes which are named using a VRML
statement DEF within a scene, once the pointer to a
node is obtained. It then creates objects that
encapsulate the EventIn and EventOut constructs of
that node. Once that is accomplished, manipulating
values within a VRML world is accomplished in
the same way as SAI. Another feature of EAI is
being notified when events are sent from eventOuts
of nodes inside the scene. In this case the applet
must subclass the EventOutObserver class, and
implement the callback() method. The advice()
method of EventOut is then passed the
EventOutObserver. It permits handling of events
from multiple sources, the source being
distinguished just according to this value (Marrin
1997). Thus the applet can be notified once
something has happened in the VRML world.

DISCUSSION

There is no doubt that Java offers sophisticated
behaviours and enormous functionality to VRML
worlds. However, whilst JSAI provides a flexible
rule-based knowledge representation to handle the
internal events of the virtual worlds easily, it has
the disadvantage of being entirely contained within
the plug-in, and references to Java also remain
entirely constrained within the VRML world. This
means we must be concerned with programming
both Java and VRML aspects, and the performance
of this combination is slow. There are few ways to
bring the outside data in, so this approach is not
suitable for programming control system. In
contrast, the EAI has overcome these shortcomings
and is useful for systemic node and dynamic
outside event handling (Marrin 1998). This
conceptual integration allows a Java applet to
"query" a plug-in and establish a real-time event-
based communication stream with it. This means
that potentially any Java applet could invoke and
use VRML as a visualization interface, and that
VRML worlds can be manipulated through a Java-
based interface (Pesce 1997).

Experience has been gained using the EAI
approach the course of this research project.
However, although EAI offers compelling
capabilities to interact with VRML world, a
number of limitations have also been encountered.
EAI allows new objects to be created on the fly; the
new objects can be added as child nodes to any
node in the VRML world. But some methods such

in4243
123

as CreateVrmlFromX(String, URL) are clumsy
(although this also applies to the Scripting
references as well) (Campbell 1998). When objects
have been created through these methods, the
nodes return an array of nodes and are resident in
the memory. The DEF names are not accessible
and getNode is unavailable on nodes that are
created dynamically. We can use TouchSensor to
solve the problem by asking the user to click on the
object and then manipulate them, but this solution
does not work well for complex objects (e.g.
objects which are assembled from many parts).
Furthermore, this unfriendly interface is not
convenient in this work which uses natural
language input. The second solution is to pre-code
all of the possible DEFed nodes in a whole Java
class and connect them to the corresponding Java
variables. Also pre-define all the eventIn and
eventOut for each node and attach them to Java
objects with corresponding types. This method can
be used for simulations that contain unchanged

objects in the scene during whole operation.
Clearly, this is another clumsy approach for our
purposes because it introduces a massive
programming overhead and makes future extension
difficult.

Another limitation is that once getNode overloads
DEF and any particular name might have been
multiple used, then only the last occurrence of a
given name is accessible (Marrin 1997). The
program may thus be confused as more than one
identical objects appear in the scene, so the user
would fail to manipulate through being unable to
get hold of the specific object.

EAI allows Java to interact with VRML world by
using a Java applet. However the applet is
restricted to the security sandbox, i.e. it is not
possible to write to files on a local hard drive, and

this extends the limitation of EAI. This is to protect
from a malicious applet storing a virus on the
computer. Even a signed applet can access local
system resources as allowed by the local systems
security policy. But it is not a good practice for the
program extension, especially for the program that
is still in the early development stage.

GRAPHIC PRESENTATION SYSTEM
IMPLEMENTATION

To address the limitations of the binding between
the EAI and VRML worlds we have developed a
graphic presentation system. This user-extensible
authoring system – termed a Story Visualiser - is
implemented and based on VRML, Java, EAI and
XML cooperation. There are three main processing
layers: File Layer, DOM (Document Object
Model) Layer and Control Layer. Each layer
includes several modules and the architecture of
the system is shown in detail in Figure 1.

VRML World
EAI

Story Visualiser

Control Layer EAI Handler

Descriptionary VODOMHandler

X3D DOM Layer DOM Controller X3DDOMHandler

SentenceHandler

VRML Objects
Database

File Combiner
File Controller File Layer

Sentence Analyser

Figure 1. Story Visualiser System Architecture

The system works as follows. Beginning with the
File Layer, an input sentence is analysed by the
Sentence Analyser module, the XML formatted
semantic representation output is extracted and a
call is made to the corresponding objects from the
VRML objects database. The objects are combined
through a File Combiner module and converted
into a set of XML files through the File Controller
Layer. Then the output XML data can be operated
on by the DOM Layer and passed to the EAI
Handle module in Control Layer. This finally
enables the Story Visualiser to construct a virtual
environment. Next we describe some detail of the
modular approach to discover how each of the
limitations of using EAI is overcome.

The File Combiner module integrates the objects
that correspond to the nouns of the semantic

in4243
124

presentation output from the input sentence. It first
reads the base VRML file root.wrl from the VRML
database, and then read the remaining VRML
objects into the memory and outputs a new
combinative VRML file which contains all the
objects. Once the objects have been merged into a
new single VRML file, the problem of accessing
the DEF names of the nodes has been addressed.
However, given an increase in the number of
objects and bearing in mind limitations of the
natural language interface, it is necessary to find a
way to restrict the DEF names of the objects.
Currently, we have tackled this by generating a rule
which allows sending and processing events for the
specific nodes, i.e. change attributes of the object,
such as Material node, Texture node and special
related nodes (Transform node, etc). For example,
the File Merge module automatically change the
DEF ball as ball_1, ball_material as
ball_1_material, and ball_text as ball_1_texture. If
the ball appears again, the DEF name will
increment by 1, e.g. ball_2 etc. Our approach is not
only to formulate the DEF names of objects that
provide solutions for data accessibility, consistency
and efficiency, but also to define the interaction
between a VRML world and a database by use of
VRML and Java. Another advantage of this
approach avoids the problem of possible multiple
DEF names. Furthermore, because this module was
written by a Java application, this means we can
now read the source files, write a new file back to
the local drive and address the Java applet’s
limitation.

XML is used for data presentation and can be used
as middleware to integrate legacy systems with
other applications. XML defines a standard format
for representing and exchanging structured data
and can be extended or embedded in Java through
the use of a standard API, the Document Object
Model (DOM), for managing that data, and the
deployment of standard services for generating and
viewing XML content. In our system, XML has
been used as a major data structure for the data
exchange between the different layers, e.g. output
of the XML formatted semantic representation of
the sentence to enable the system to match VRML
objects and transport object depictions (e.g.
adjectives, prepositions) to the Story Visualiser to
manipulate VRML scene.

To enable the Java Applet to interact with a VRML
scene through EAI, it is necessary to pre-code all
the DEFed nodes and related events in the Java file
in advance. This approach results in data
redundancy and it is also impossible to include all
the DEFed nodes in a single file. However, to
extract the DEFed nodes from a VRML file is a
difficult task. So in this instance, we use X3D
(Extensible 3D) as the solution because it is

relative easy to obtain the DEFed nodes. X3D is a
3D standard for the Web that expresses the
geometry and behavior capabilities of VRML 97
using XML. It has been proposed by the Web3D
Consortium since 1999 and represents the next-
generation VRML. X3D is an Open Standard
XML-enabled 3D file format that enables real-time
communication of 3D data across all applications
and network applications. However, the standard is
still immature and under review by the ISO. In our
system the output of the combined VRML file is
converted into an X3D file using the VRML2X3D
translator. We then use X3D DOM Handler to
extract and store the DEFed names as a tree
structure in memory to enable the EAI Handler to
access and send or receive events to/from them.

COMPILATION AND EXAMPLE

JavaSoft's JDK 1.3.1 has been used to compile the
Java classes. JAXP 1.0.1 is used to parse the XML
file. The EAI is using blaxxunClientSDK which is
provided by Blaxxun, Inc. For the natural language
part, we used NLS API which was developed by
the National Library of Medicine. This
implementation has been tested on a Windows
98/2000 platform using Internet Explorer 5.0 and
6.0; Netscape 4.75, 6.0.

We present here a simple example to illustrate the
way of how the system works. Currently, the
system enables generation of the 3D scenes and
manipulation of the properties of 3D virtual objects
by using natural language input. Consider a
storyline that includes the following sentences to
describe the environment:

There is a yellow room.
A table is in the room.
There is a green vase on the table.
A book is next to the vase.
There is a picture on the left wall.

Theses are interpreted and presented one by one.
The listing shown below presents the XML
formatted semantic presentation, and Figure2
shows an output 3D scene from the scene
descriptions.

<?xml version='1.0' encoding='UTF-8'?>
<sentence-encoding>

<!-- ==== sentence 1======-->
<np reference="room_1" adjective="yellow"/>
<verb-frame verb="is" object="room_1"/>

<!-- ==== sentence 2======-->
<np reference="table_1"/>
<verb-frame verb="is" subject="table_1" object="room_1"
preposition="in"/>

<!-- ==== sentence 3======-->
<np reference="vase_1" adjective="green"/>
<verb-frame verb="is" object="vase_1,table_1"
preposition="on"/>

<!-- ==== sentence 4======-->
<np reference="book_1"/>
<verb-frame verb="is" subject="book_1" object="vase_1"
preposition="next to"/>

<!-- ==== sentence 5======-->
<np reference="picture_1"/>
<verb-frame verb="is" object="picture_1,"
preposition="on"/>
</sentence-encoding>

in4243
125

CONCLUSION

The goal of the research described here was to
generate a 3DVE by using a simplified story-based
natural language input. In this paper, we explained
and discussed the different approach of using
VRML and Java technologies to generate an
interactive 3DVE. The EAI fills in the gaps
between the built-in functionality of a VRML
world and the programmability of Java through the
use of an embedded Applet on an HTML Web
page. We then presented the architecture of our
system which overcomes the limitations of the EAI
by integration of Java, XML, etc technologies. The
advantage of choosing XML as the primary data
structure makes the system easy to extend. Our
approach also provides solutions for data
accessibility, consistency and avoids redundancy.
The example illustrates that the methodology
works satisfactorily on generation 3D scene by
manipulating the visual features of the VEs.
However, the construction of the Story Visualiser
system is still work in progress. It can be further
improved by developing an instruction interface
that will allow users to interact with the 3DVE in
real time. It will also be necessary to expand the
Descriptionary and VRML objects database for
more complex tasks.

REFERENCES

Ames, A., Nadeau, D and Moreland, J. (1997) The

VRML Source Book. 2nd ed. John Wiley & Sons,
Inc. Canada.

Brutzman, D (1998) The Virtual Reality Modeling
Language and Java. Comm. ACM, vol. 41 no. 6,
June 1998.

Campbell, B. (1998) Extending VRML2 with Java. Java
Developer’s Journal. Vol. 3, Issue 6. SYS-CON
Publications, Inc. VRMLJournal.com.

Larsson, D (1999) Linking Java with VRML97.
Technique Report. PELAB, Department of
Computer and Information science. Linköping
University, Sweden.

EAIFAQ
http://www.frontiernet.net/~imaging/eaifaq.html

Kimen, S. (1997) VRML Is, Java Does, And the EAI
Can Help.
http://vrml.sgi.com/features/java/java.html. Last
access September 2001.

Lea, R., Matsude, K. and Miyashita, K. (1996) Java for
3D and VRML Worlds. New Riders Publishing.
Indianapolis. USA.

Marrin, C., Kent, J., Immel, D. and Aktihanoglu, M.
(1997a) Using VRML Prototypes to Encapsulate
Functionality for an External Java Applet.
http://www.marrin.com/vrml/papers/InternalExtern
al/Chris_Marrin_1.html. Last access November
2001.

Marrin, C. (1997) Proposal for a VRML 2.0 Information
Annex. External Authoring Interface Reference.
Silicon Graphics. Inc.
http://www.web3d.org/WorkingGroups/vrml-
hisotry/eai_draft.html. Last access August, 2002.

Marrin, C., McCloskey, B., Sandvil, K and Chin, D.
(1997b) Creating Interactive Java Applications with
3D and VRML. A Silicon Graphics, Inc. White
Paper. http://cosmo.sgi.com/developer.html. Last
access November 2001.

Marrin, C. (1998) EAI Specification.
http://www.web3d.org/WorkingGroups/vrml-
eai/ExternalInterface.html. Last access November
2001.

McCarthy, M and Descartes, A. (1998) Reality
Architecture. Building 3D worlds with Java and
VRML. Prentice Hall Europe. Hertfordshire.

Mehdi, Q., Zeng, X., and Gough, N.E. (2003) Story
Visualization for Interactive Virtual Environment.
ISCA 12th International Conference on Intelligent
and Adaptive Systems and Software Engineering.
California.

Pesce, M (1997) VRML and Java, A Marriage Made in
Heaven.
http://developer.netscape.com/viewsource/pesce_vr
ml2/pesce_vrml2.html. Last access July 2003.

Web3D Consortium. http://www.web3d.org.
Wetering, H. (2001) Java: A Simple, Extensible, Java

Package for VRML. Proceedings Computer
Graphics International 2001, IEEE Computer
Society Press, 2001

Zeng, X., Mehdi, Q and Gough, N.E. (2002) Generation
of a 3D Virtual Story Environment Based on Story
Description. Proc. of 3rd SCS Int. Conf. GAME-ON
2002, London, 2002.

Zeng, X., Mehdi, Q and Gough, N.E. (2003) Natural
Language Inference Technology for Reasoning
Visual Information of Virtual Environment. Proc.
of 4th SCS Int. Conf. On Intelligent Games and
simulation, GAME-ON 2003, London.

Figure 2. 3D scene generated from sentences

http://www.frontiernet.net/~imaging/eaifaq.html
http://vrml.sgi.com/features/java/java.html
http://www.marrin.com/vrml/papers/InternalExternal/Chris_Marrin_1.html
http://www.marrin.com/vrml/papers/InternalExternal/Chris_Marrin_1.html
http://www.web3d.org/WorkingGroups/vrml-hisotry/eai_draft.html
http://www.web3d.org/WorkingGroups/vrml-hisotry/eai_draft.html
http://cosmo.sgi.com/developer.html
http://www.web3d.org/WorkingGroups/vrml-eai/ExternalInterface.html
http://www.web3d.org/WorkingGroups/vrml-eai/ExternalInterface.html
http://developer.netscape.com/viewsource/pesce_vrml2/pesce_vrml2.html
http://developer.netscape.com/viewsource/pesce_vrml2/pesce_vrml2.html
http://www.web3d.org/
in4243
126

