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ABSTRACT 
 
Current research in computer music composition almost 
exclusively involves the manipulation of music stored as 
MIDI data. While this allows direct access to the structure of 
music, it creates limitations in realism for the end result of 
such techniques. This paper describes a method designed to 
represent music in a form that facilitates the use of existing 
processing techniques while conserving the ‘real-world’ 
attributes of music recorded in PCM format giving computer-
game developers a facility for the production of variations on 
a pre-recorded theme, whatever the original source. 
Experimental results are presented to demonstrate that 
polynomial interpolation is a viable technique. 
 
INTRODUCTION 
 
This paper explores the use of polynomial interpolation to 
improve the generation of audio tracks for computer games.  
Traditionally, there is a recurring tendency for computer 
music research to tackle the processing of music at a 
grammatical level. Music is often described as a language 
and, indeed, can be quite legitimately thought of as so. There 
is however evidence to suggest that working at a higher-level 
than that of the note-sequence has considerable potential for 
analysis and composition. As far back as 1979, it was 
becoming apparent that simply applying techniques similar to 
those used in Natural Language Processing (NLP) was falling 
short of the mark in unlocking the secret of what makes 
music sound musical (Meehan 1979). The concept of 
‘Shenkerism’, whereby initial parsing of a piece of music is 
performed at the note-group level rather than delving into 
every facet of its structure, was a hint that being ‘less-precise’ 
could in fact make the task of instilling creativity in computer 
music easier. This was also the case with the later POD 
system of Truax (1977) that introduced the concept of 
‘Digital Sound Objects’. A survey by Roads (1985) is quick 
to criticise many of the automatic-composition systems 

developed around the middle of the twentieth century for 
their rigidity – something that could reasonably be seen as a 
necessary compromise to achieve the required degree of 
success when using an abstracted representation of music. 
 
Nevertheless, computer music research seems to be anchored 
to the concept of musical notes whether the technique in use 
is a Neural Network, Genetic Algorithm, Stochastic or 
Grammatical algorithm or an Iterative Formula (with some 
exceptions in the latter case). A cursory glance through core 
texts in computer music such as Roads (1995) and Miranda 
(2001) will make this apparent. One possible reason for this 
is the fact that, when working at a higher syntactic level, one 
faces the choice of either being limited by having to work 
with note-groups or relative pitch structures as atomic 
components or, if these high-level symbols are made more 
flexible, loosing some of the very information one is trying to 
process. 
 
The computer-games industry largely ignores existing 
automatic composition techniques. The game ‘Halo’ 
(O’Donnell, 2002) which is recognised as having one of the 
most advanced dynamic-music systems currently in existence 
only stretches to event-driven transitions between manually-
composed segments of music whilst other landmark games 
such as Quake seem to treat background music as a technical 
afterthought. 
 
A major driving factor behind the technique presented here, 
was the desire to preserve as much data as possible when 
improvising around an existing composition. Of paramount 
importance in this respect is the issue of timbre. Usually 
defined as the characteristic of a sound that allows us to 
identify it as emanating from a particular source (a musical 
instrument for instance), timbre is an issue for any 
composition stored in MIDI format as the composer is 
restricted to whatever sounds the synthesis module of the 
sound-card can generate. This issue becomes augmented 
when working with existing compositions recorded from real 
instruments in PCM form. A conversion to MIDI format 
allowing computer improvisations destroys all of the original 
timbre information resulting in (despite the use of advanced 
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synthesis techniques) an artificial sounding end-product that 
fails to preserve any of the nuances and idiosyncrasies of the 
original performers. The aim of the work described here was 
to allow any recording to be used as the basis for background 
music in a game so as to create the same emotional effects 
that a film-soundtrack, which is be tailored to a predefined 
script, creates for its audience. Consequently, MIDI was 
discarded as a viable option. 
 
The disadvantage of working with wave-data as opposed to 
MIDI is that while it might be possible to decipher and work 
on the regular, amplitude samples provided in wave-data files 
(using say a neural network), this involves a complex 
procedure just to obtain a single note that can be identified 
from the mass of fundamentals, partials and general 
background noise. This limitation was the initial hurdle in the 
process of developing a professional dynamic music system 
for use in computer-games. While the idea of a musical-
improvisation system composing the soundtrack for a game 
in real-time and in response to environmental and narrative 
factors present in the gaming environments is not 
unresearched (Casella & Paiva 2001), there seems to be an 
automatic choice of MIDI as the format to work with, 
presumably for the reasons already mentioned. It is felt that a 
compromise is possible if some of the complexity of such a 
representation system were to be handled by Artificial 
Intelligence (AI). 
 
The aims of this research are thus to produce variations on an 
existing sound track by means of AI; to limit the  
representation of that theme by defining only at a conceptual 
level; to segment the track and represent each segment 
parametrically; and to use the parameters to generate new 
instantiations of the sound. 
 
The paper is organised as follows: In the next section we 
examine the possible use of AI techniques to solve this 
problem and outline the use of polynomial interpolation as a 
basic data representation for this process.  This is followed by 
a description of the experimental methodology and the results 
obtained.  The paper concludes by examining the limitations 
and possible improvements for the proposed technique.  
 
METHODOLOGY 
 
AI as a Facilitator 
 
Artificial Intelligence (AI) provides a way of tackling 
problems without having to think about the fine detail. As an 
eventual aim of the work is to produce variations on a theme 
by means of AI, the representation of that theme needs only 
to be defined at a conceptual level. What is required is a level 
of quantisation whereby each code represents not just pitch 
information but rhythmic and timbral information as well. 
Our approach is based around the theory of wavelets and is 
designed to allow segments of a soundtrack to be categorised 
as instantiations of dynamically identified generic 
waveforms. While these ‘waveform-objects’ are extremely 
difficult to work with manually, it is believed that a stochastic 
technique such as a Markov Model (Russell & Norvig 1995) 
or an AI technique such as the Kohonen Self Organising Map 
(Kohonen 1989) will be able to identify the relationships 

between them in the context of specific musical tracks. These 
relationships can then be manipulated in order to induce 
variations on the original theme, theoretically producing 
music that sounds as though performed by the original artists. 
 
Segmentation and Polynomial Interpolation 
 
In order to identify segments of PCM data as specialisations 
of generic waveforms, it is necessary to find a representation 
of those segments that allows rigorous comparison. The 
approach taken here is a functional one. Lagrange 
Interpolation is applied to successive segments of the 
waveform representation of a track resulting in a sequence of 
polynomial equations, each of which representing a particular 
segment. As the Lagrange formula allows determination of 
the degree of a polynomial before performing calculations, 
the only parts of an equation that need to be stored are the 
coefficients of the various terms. 
 
The Lagrange formula adopted is as follows (Butler & Kerr 
1962): 
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j∈[0,n], j≠n, where x0 … xn represent a series of values for 
the independent variable (in this case, instants in time) and 
lj(x) is the polynomial for the wave segment at instant x. A 
complete approximating polynomial for a given segment is 
obtained by summing the products of the various lj(xj) and 
their corresponding f(xj) (the amplitude at instant xj): 
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It was discovered pragmatically that, in the context of this 
paper, Lagrange polynomials generated from large sets of 
PCM data are generally unreliable in terms of accuracy. 
Another important issue affecting the choice of parameters 
was that of sampling frequency. The danger is that by taking 
PCM values in close proximity to each other, little variation 
is picked up, with the result that each ‘wavelet’ reduces 
effectively to a simple curve or, in extreme cases, a line. In 
practice this would lead to identical classifications of most 
segments giving no significant outcome. 
 
Currently the sampling rate (11,025 Hz), number of 
interpolation points (6 per segment) and distance between 
interpolation points (5 samples) are fixed at values chosen 
through informal experimentation. While this configuration is 
sufficient to demonstrate the potential of the technique, it is 
unlikely that this approach will be sufficient to take the work 
forward. As there is no relation between the aforementioned 
parameters and the structure of the music being processed, it 
is purely a matter of chance as to whether or not the more 
(structurally) significant parts of a wave are picked up or 
missed by the interpolating-quantiser. The next step is 
therefore to add a degree of ‘intelligence’ to the algorithm, 
taking into account the structure of the music on which it is 
working in both the time and frequency domains. 
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EXPERIMENTS 
 
Various recordings of a musical soundtrack were made in 
PCM format using the low-level wave functions provided by 
the Win32 API in a modified version of the simple buffered 
recording program provided by Petzold (1998) in order to 
reduce development time. This approach provided memory-
buffers of wave data that were then processed by the 
interpolating-quantiser. The Lagrange coefficients were 
written to a file. The quality of this representation was then 
validated by reconstructing the waveform and comparing the 
result with the original. While the technique is not designed 
to be an alternative storage-format for music due to an 
inevitable loss in sound-quality caused by the geometric 
properties of the Lagrange polynomials, this exercise was 
necessary in order to verify that the generated wavelets bore 
sufficient relation to the original wave-segments. Once it had 
been determined that the LIP data, when played back, was 
recognisable as the original PCM recording, graphical 
representations of some of the wavelets were made with their 
associated wave-segments. These graphs clearly illustrate the 
potential for success of this approach to sound representation 
while simultaneously highlighting areas for improvement. A 
low sampling rate was deliberately chosen in order to 
determine the maximum ‘strain’ that the system could deal 
with.  

 
RESULTS 
 
The following graphs illustrate the effect of interpolative-
quantisation using the Lagrange-based technique described 
above on a piano rendition of the C Major scale sampled at 
11,025 Hz (CD audio is generally recorded at 44.1KHz). The 
start and end samples are given in the titles. Also, note the 
differing ranges of the Y axes. 
 
The reproduction in Fig. 1 is very close in form to the 
original, however the Lagrange technique is at the mercy of 
two factors. We will discuss the most innate of these shortly, 
but an evident side effect of taking points at fixed intervals is 
the fact that, by missing a peak or trough, the resulting 
polynomial will flatten out that part of the waveform as the 
subsequent group of samples shown in Fig. 2 demonstrates. 
 
One should also be aware that making even a slight change to 
a waveform can introduce many new partials (component 
waves that, when added together, form the complex wave 
seen) and that because of the way the brain interprets sound 
waves (Zotkin et al, 2003) this can have unwanted side 
effects such as single notes being turned into chords and 
pseudo-random timbres replacing the sounds of the original 
instruments. 
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Fig. 1  Acceptable interpolated reproduction of  wave-segment 
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Fig. 2  Inaccurate reproduction 
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LIMITATIONS AND POSSIBLE SOLUTIONS 
 
The primary risk in using Lagrange Interpolation is that 
the formula does not offer a way to determine how well a 
polynomial fits the original waveform (Hosking et al, 
1986). One technique which is less than satisfactory and 
high on the priority list for replacement is that of 
overlapping the regenerated wavelets to compensate for a 
tendency whereby  (at least with the current, empirically 
determined operating parameters of the system) the 
Lagrange Polynomials usually become very inaccurate 
after the last reference point (I.e. the last point given to the 
Lagrange formula from the original PCM data). This may 
be resolved by the measures described below, but if not 
will warrant the replacement of the Lagrange formula by 
another polynomial technique. 
 
As has already been stated, the final aim of this work is not 
to develop an alternative sound storage technique. It is to 
create, in parallel to the PCM data, a meaningful digest of 
a piece of music that can be used to alter it without loosing 
timbral information. We must therefore take into account 
the fact that some parts of a piece of music are more 
significant than others. Immediately, fixing the interval 
between interpolation points is highlighted as a problem. 
While Lagrangian Interpolation can implicitly deal with 
varying distances between these points, the problem again 
arises that we have no way of determining the accuracy of 
a polynomial and, with so many polynomials resulting 
from even a one second sample of PCM data at 11,025 Hz, 
no way of flagging ‘bad’ polynomials for treatment by a 
corrective algorithm. 
 
On the other hand, other interpolation techniques tend to 
require data tabulated at equal intervals (Hosking et al, 
1986). This may turn out to be unacceptable for reasons 
already mentioned. Also, the order at which these constant 
intervals are found often determines the order of the 
resultant polynomial. This makes the storage structure 
required more complex but may provide a payoff in terms 
of accuracy. 
 
With some options clearly available, we then face the task 
of identifying significant events in a piece of music. While 
the efficacy of techniques with which to accomplish this is 
yet to be investigated, it is felt that a protocol-analytic 
study of composers and audience members will be of 
value. 
 
Assuming for a moment the worst case scenario; it may 
become apparent that interpolating polynomials will be 
sufficient for the manipulation of music by AI techniques 
but not sufficient to completely replace PCM as a 
recording and playback format. It will therefore be 
necessary to map changes made to the approximating 
polynomials to the raw PCM data that will actually form 
the output of the dynamic-music system. It is here that a 
more significant overlap with Computer Sound Synthesis 
occurs. Slaney, et al (1996) have conducted research into 

the problem of “Automatic Audio Morphing”, a means of 
smoothly transitioning from one sound to another. They 
achieve this by isolating each different aspect of a sound-
wave to it’s own dimension. These dimensions are then 
warped according to freely-definable rules governing the 
relationships between them. This approach may well 
provide a satisfactory Polynomial-PCM bridge in our 
dynamic-music system. 
 
 
CONCLUSION 
 
While currently in it’s infancy, we have demonstrated a 
way of representing sound that has the capacity to 
facilitate the manipulation of any music stored in PCM 
format while preserving all of the original data not 
concerned with the piece’s ‘grammatical’ structure. This is 
almost an opposite approach to that taken by systems using 
the MIDI standard or similar. Any pitfalls currently 
inherent in the technique indicate their own solutions and 
have enabled us to construct a solid methodology with 
which to take the work forward. 
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