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ABSTRACT 
 
Solving sequential decision problems in computer games, 
such as non-player character (NPC) navigation, can be quite 
a complex task. Current games tend to rely on scripts and 
finite state machines (FSM) to control AI opponents. These 
approaches however have shortcomings; as a result academic 
AI techniques may be a more desirable solution to solve 
these types of problems. This paper describes the process of 
applying the value iteration algorithm to an AI engine, which 
can be applied to a computer game. We also introduce a new 
stopping criterion called game value iteration, which has 
been designed for use in 2D real time computer games and 
we discuss results from experiments conducted on the AI 
engine. We also outline our conclusions which state that the 
value iteration and the newly introduced game value iteration 
algorithms can be successfully applied to intelligent NPC 
behaviour in computer games; however there are certain 
problems, such as execution speed, which need to be 
addressed when dealing with real time games. 
 
INTRODUCTION 
 
Whilst playing computer games online against human 
opponents, it became apparent that it was a more interesting 
playing experience, than that of playing against non-player 
characters (NPCs). The human opponents were more 
difficult to anticipate and were more challenging, in 
comparison to their NPC counterparts. As a result, we tend 
only to play the single player aspect of a computer game a 
handful of times before we feel the game’s gameplay 
becomes predictable and easy to beat.  
 
This is backed up by Jonathan Schaeffer (2001 in Spronck et 
al., 2003) who states that the general dissatisfaction of game 
players with the current levels of AI for computer controlled 
opponents makes them prefer human controlled opponents. 
Currently commercial computer game AI is almost 
exclusively controlled by complex “manually-designed 
scripts” (Spronck et al., 2002). This can result in poor AI or 
“Artificial Stupidity” (Schaeffer, 2001 in Spronck et al., 
2002).  
 
The predictability and any “holes” within a scripted 
computer game can then be exploited by the human player 
(Spronck et al., 2002). The game industry is however 
constantly involved in employing more sophisticated 
techniques for NPCs (Kellis, 2002), especially in light of the 
increase in personal PC power, which enables more time to 
be spent processing AI. Recent games, such as Black & 

White (Lionhead, 2001) use learning techniques to create 
unpredictable and unscripted actions. However most games 
still do rely on scripts and would benefit from an 
improvement in their AI. 
 
These observations formed the basis of a research project 
into the field of AI and computer game AI. The aims of this 
project were to research computer games in order to shed 
light on where computer game AI can be poor and to 
research AI techniques to see if they might be able to be used 
to improve a computer game’s AI. The objectives of the 
project were the delivery of a computer game AI tool that 
demonstrated how an AI technique could be implemented as 
an AI engine and a computer game that demonstrated the 
engine. This paper demonstrates how Markov decision 
processes can be applied to a computer game AI engine, with 
the intention of showing that this technique will be a useful 
alternative to scripted approaches. This paper covers the 
implementation of the AI engine; the implementation of the 
computer game will be covered in our next paper. 
 
MARKOV DECISION PROCESSES 
 
Markov decision processes (MDPs) are a mathematical 
framework for modelling sequential decision tasks / 
problems (Bonet, 2002) under uncertainty. According to 
Russell and Norvig, (1995), Kristensen (1996) and 
Pashenkova and Rish (1996) early work conducted on the 
subject was by R. Bellman (1957) and R. A. Howard (1960).  
 
The technique works by splitting an environment into a set 
of states. An NPC moves from one state to another until a 
terminal state is reached. All information about each state in 
the environment is fully accessible to the NPC. Each state 
transition is independent of the previous environment states 
or agent actions (Kaelbling and Littman, 1996). An NPC 
observes the current state of the environment and chooses an 
action. Nondeterministic effects of actions are described by 
the set of transition probabilities (Pashenkova and Rish, 
1996). These transition probabilities or a transition model 
(Russell and Norvig, 1995) are a set of probabilities 
associated with the possible transitions between states after 
any given action (Russell and Norvig, 1995). For example 
the probability of moving in one direction could be 0.8, but 
there is a chance of moving right or left, each at a probability 
of 0.1. There is a reward value for each state (or cell) in the 
environment. This value gives an immediate reward for 
being in a specific state.  
 
A policy is a complete mapping from states to actions 
(Russell and Norvig, 1995). A policy is like a plan, because 
it is generated ahead of time, but unlike a plan it’s not a 
sequence of actions the NPC must take, it is an action that an 
NPC can take in all states (Yousof, 2002). The goal of MDPs 
is to find an optimal policy, which maximises the expected 
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utility of each state (Pashenkova and Rish, 1996). The utility 
is the value or usefulness of each state. Movement between 
states can be made by moving to the state with the maximum 
expected utility (MEU). 
 
In order to determine an optimal policy, algorithms for 
learning to behave in MDP environments have to be used 
(Kaelbling and Littman, 1996). There are two algorithms that 
are most commonly used to determine an optimal policy, 
however other algorithms have been developed, such as the 
Modified Policy Iteration (MPI) algorithm (Puterman and 
Shin, 1978) and the Combined Value-Policy Iteration 
(CVPI) algorithm (Pashenkova and Rish, 1996). 
 
The two most commonly used algorithms for determining an 
optimal policy have a foundation and take inspiration from 
Dynamic Programming (Kaelbling and Littman, 1996) 
which is also a technique for solving sequential decision 
problems. In addition problems with delayed reinforcement 
are well modelled as MDPs (Kaelbling and Littman, 1996). 
There are many algorithms in the area of reinforcement 
learning (For example: Q learning) that address MDP 
problems (Mitchell, 1997), in fact understanding Finite 
MDPs are all you need to understand 90% of modern 
reinforcement learning (Sutton and Barto, 2000). 
 
The two most commonly used algorithms are value iteration 
(Bellman, 1957) and policy iteration (Howard, 1960). The 
value iteration (VI) algorithm is an iterative process, which 
calculates the utility of each state, which is then used to 
select an optimal action (Russell and Norvig, 1995). The 
iteration process stops when the utility values converge. 
Convergence occurs when utilities in two successive 
iterations are close enough (Pashenkova and Rish, 1996). 
The degree of closeness can be defined by a threshold value. 
This process was however, observed to be inefficient, 
because the policy often becomes optimal long before the 
utility estimates reach convergence (Russell and Norvig, 
1995). Because of this another way of finding an optimal 
policy was suggested. It is called policy iteration. 
 
The policy iteration (PI) algorithm generates an initial 
policy, which usually involves taking the rewards of states as 
their utilities (Pashenkova and Rish, 1996). It then calculates 
the utilities of each state, given that policy (Russell and 
Norvig, 1995). This is called value determination 
(Pashenkova and Rish, 1996; Russell and Norvig, 1995). It 
then updates the policy at each state using the new utilities. 
This is called policy improvement (Pashenkova and Rish, 
1996). This process is repeated until the policy stabilises. 
The process of value determination in policy iteration is 
achieved by a system of linear equations (Pashenkova and 
Rish, 1996).  
 
This works well in small state spaces, but in larger state 
spaces this system is not efficient. However arguments have 
been made that promote each approach as being better for 
large problems (Kaelbling and Littman, 1996). This is where 
other algorithms such as modified policy iteration (MPI) can 
be used to improve the process. Modified policy iteration 
was introduced by Puterman and Shin (1978). In modified 
policy iteration, value determination is similar to value 
iteration, with the difference being that utilities are 

determined for a fixed policy, not for all possible actions in 
each state (Pashenkova and Rish, 1996). The problem with 
this process is that the number of iterations of the value 
determination process is not determined. Pashenkova and 
Rish (1996) state that Puterman (1994) proposed the 
following options that could be used to solve this problem. 
Firstly, simply use a fixed number of iterations, secondly 
choose the number of iterations according to a predefined 
pattern and thirdly use the same process as value iteration. 
 
COMPUTER GAMES & APPLICATIONS 
 
There are many different types of commercial computer 
games available today; these include Real Time Strategy 
(RTS) games, sims games, God games and First person 
shooters (FPS) (Tozour, 2002). The AI in these and other 
type of games could possibly benefit from MDPs. 
 
The most obvious computer game application for MDPs is a 
grid world navigation example, where the game world is 
split into a grid, which an NPC uses to navigate from one 
location to another. This example can be found in most 
literature on the subject including Russell and Norvig (1995) 
and Mitchell (1997). The task of moving NPCs in these 
types of game is in essence a sequential decision problem. 
This is exactly what the MDPs framework solves. This use 
of MDPs could be applied to RTS, FPS or 2D platform 
games. Other applications of MDPs include decision-making 
and planning. For this work we propose to apply MDPs to 
NPC movement in a 2D style game, such as Pac-man 
(Namco, 1980). We have chosen this type of game because it 
operates in real time and offers plenty of scope to explore the 
different features of MDPs. 
 
DEVELOPMENT 
 
In this section we present the development of the VI 
algorithm as an AI engine for use in real time 2D style 
computer games. The VI algorithm was implemented with a 
convergence threshold as the stopping criterion. However we 
also looked into creating our own stopping criterion, which 
was based around VI and designed for speed and use in real 
time computer games.  
 
Value iteration using convergence as a stopping criterion is 
designed to find the optimal policy. However a less than 
optimal policy is acceptable in computer games if it speeds 
up processing time and still allows the NPC to reach its goal 
in an appropriate and acceptable manner. We have 
developed a new stopping criterion, which is as simple and 
quick as possible, but which still should achieve a workable 
policy. We call the new stopping criterion “Game Value 
Iteration” (GVI) and it works as follows: we simply wait for 
each state to have been affected by the home state at least 
once. This is achieved by checking if the number of states, 
with utilities that are equal to or less than 0 (zero) are the 
same after 2 successive iterations. All non-goal states have a 
reward (cost), which is slightly negative depending on their 
environment property (i.e. land, water etc.). Since utilities 
initially equal rewards, a state’s utility will be negative until 
it has been affected by the positive influence of the home 
state.  
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As a result the number of cells with negative utilities will 
decrease after each iteration. However some states may 
always retain a negative utility, because they have larger 
negative rewards due to their environment property and they 
may be surrounded by states with similar environment 
properties. Consequently when the number of states with 
negative utilities stays the same for 2 successive iterations 
we can say that the states are not optimal, but they should be 
good enough for a workable policy to exist, which the NPC 
can use to navigate the map. Before this point it is likely that 
no workable policy for the entire environment would exist. 
This stopping criterion assumes rewards can only be 
negative and there is a positive terminal state which is equal 
to 1. Also note that, checking if a state’s utility is greater 
than 0 is not required for the terminal states, because their 
utilities never change. When each state has been affected by 
the home state at least once we can say that the states are not 
optimal, but they should be good enough for a workable 
policy to exist, which the NPC can use to navigate the map. 
 
An AI engine program was developed in Microsoft Visual 
Basic in conjunction with the AI engine. This program 
contained the AI engine itself and an environment to test the 
engine. The environment consisted of a top down view, just 
like a 2D style game and was made up of a 10x10 grid of 
cells, each cell in the grid having different properties 
associated with it. For example a cell could have a land, wall 
or water property. Figure 2 shows an example of how the 
grid based environment would look. Figure 2 is based on an 
example of this type of environment found in Russell and 
Norvig (1995). 
 
 
 
 
 
 
The properties of an environment are used by the NPC (i.e. 
AI engine) to affect the reward value for each cell. For 
example water could mean slower movement for the NPC, 
so by giving cells with the water property an additional 
negative reward value (i.e. –0.02) it will mean that the 
reward for being in that cell is slightly less than cells with no 
water property. When the utility value of each cell is created 
the utility values of cells with the water property will be less 
than those with no water property. So when an NPC makes a 
choice of which cell to move to it will be less likely to move 
to the cell that has the water property. 
 
The NPC will be able to move in one of four directions 
North, East, South, or West, which will supposedly move the 
NPC one cell in the intended direction, but only with a 
certain amount of probability (Pashenkova and Rish, 1996), 
such as 0.8.  However this will depend on the obstacles in 
the grid such as a wall or the edge of the grid. 
 
The NPC will begin in a start state, which can be any cell in 
the grid, except the enemy cell or home cell. The terminal 
states, where the simulation ends, are the home and the 
enemy states. In 2D style game the home state for the NPCs 
will be the human player. The home terminal state is the 
positive terminal state for the NPC and the enemy terminal 

state is the negative terminal state, which the NPC will 
avoid. 
 
IMPLEMENTATION 
 
This section covers how MDPs were implemented as an AI 
engine. As stated above the utility value of each cell in the 
grid (game environment) was determined by using the value 
iteration algorithm. We used two different stopping criteria: 
utility convergence and our new stopping criterion, called 
game value iteration, to ensure that each cell in the grid 
creates a usable policy for the NPC. 
 
When the utility values for each cell are initialised they are 
initialised to the reward value of each cell. Each non-goal 
state always has a slightly negative reward on top of any cell 
property rewards. The cell(s) containing the enemy will have 
a reward value of –1 and the cell containing the home (or 
goal) will have a reward value of +1, regardless of the cell’s 
other properties.  
 
A schematic description of the GVI algorithm is given 
below. The value iteration algorithm is implemented exactly 
as it is in Russell and Norvig (1995). The GVI algorithm is 
based on this algorithm. 
 
 
 
 
 
 
 

   Home 
 Wall   
Start   Enemy 

N 

Figure 1: Example of the grid based environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The step in the schematic description above, where the utility 
values are determined is the first for loop just after the repeat 
statement. The equation in that loop can also be seen below. 

][max][][1 jUMiRiU
j

a
ija ∑+←  

Where U1[i] is the new utility value estimate for a cell in the 
grid and R[i] is the reward value. maxa is select the utility 
that returns the maximum value. i is the index of all cells in 
the grid and j is the index of the number of cells surrounding 
i (i.e. possible moves, north, south, east, west). M is the 
transition model (the probability of moving in a certain 
direction) and U is the current utilities. 
 
Given the value iteration equation above, the utilities for 
each state can be determined, and given the fixed policy of 
maximising expected utilities, an NPC will be able to make a 
move in any state. No matter what the outcome of any action 
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is, the NPC will always know where to move next, by 
selecting the cell that has the highest expected utility. Next 
we are going to show an example of how the equation will 
work in practice. It demonstrates for one iteration how the 
utility value for one cell in the grid will be determined. 
 
 
 
 
 
 
 
 
 
 

PA = 0.8. 
PB = 0.1. 
PC = 0.1. 
PD = 0.0. 

 
To work out the utility of cell 2,2 the following will be conducted: 

 
Action N =  PA * U1  +  PB * U2  +  PC * U4 + PD * U3. 
 
Action E =  PA * U2  +  PB * U3  +  PC * U1 + PD * U4. 

 
Action S =  PA * U3  +  PB * U4  +  PC * U2 + PD * U1. 

 
Action W =  PA * U4  +  PB * U1  +  PC * U3 +  PD * U2. 

 
U  = Reward  +  The action that returns the maximum value. 

 
This process is repeated for every cell in the grid, except for 
the enemy’s cell(s), the home cell and any wall cells. If the 
utility is being calculated for the cell next to a wall or a cell 
on the edge of the grid, there will be no possible move in 
those directions. If this occurs, then the utility value of the 
cell whose utility is being calculated will be used. One 
iteration is complete when every cell has been visited once. 
The process is repeated until the stopping criterion is met. 
 
EXPERIMENTAL RESULTS 
 
Many different experiments were conducted on the AI 
engine through the AI engine program. The results of these 
experiments were used to help implement a computer game 
and to validate our work. The parameters that were varied in 
the experiments included the configuration of the maps (i.e. 
locations of obstacles and goal states) and the reward values 
associated with cell properties.  
 
However the results discussed here mainly look at 
determining the appropriate threshold value for VI, 
determining whether the GVI algorithm works in practice 
and comparing each algorithm’s performance. In our 
experiments an NPC was setup to learn what action to take 
in each cell by using the VI algorithm. Tables 1 and 2 show 
some of the results of this work and screenshots of the test 
maps used to produce the results in those tables. 
 
For all experiments the following things were kept the same: 
there were two goal states, +1 (home) and –1 (enemy), and 
there was a cost of -0.0000001 for all non-goal states. The 
probability of moving in the intended direction was 0.8 and 
the size of the game world was 10x10. 
 
The HD column in tables 1 and 2 stands for hamming 
distance between the generated policy and the optimal 

policy. The optimal policy is the policy obtained by running 
the algorithm with the same initial data and maximum 
precision (Pashenkova and Rish, 1996). The use of hamming 
to determine the difference between a policy and an optimal 
policy is based on that used in Pashenkova and Rish (1996). 
 

Key 
U = Utility.  
P = Probability. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: The environment map and the results produced from experiments 
conducted on the map. 

Table 1: The environment map and the results produced from experiments 
conducted on the map. 

The maps used for the experiments above attempt to 
represent a maze like world that you would expect to see in 
2D style games. However we also experimented with 
simpler and more complex maps. Tables 1 and 2 show that 
the largest threshold, which produces an optimal policy, is 
0.031250 (Table 1). However this threshold does not 
produce an optimal policy in Table 2. This shows that the 
utility thresholds, which produce an optimal policy, vary 
from map to map. In general we observed that as map 
complexity increased, they required more iterations and 
smaller thresholds to achieve workable and optimal policies. 
This could cause problems in computer games because maps 
are constantly changing and vary from level to level. As a 
result it’s reasonable to say that a conservative threshold 
would have to be used to ensure that a map always 
converged to an optimal or near optimal policy. Tables 1 and 
2 also show that the utility values for the VI algorithm 
converge after the policy has converged. This result is 
consistent with previous work in the area, such as 
Pashenkova and Rish (1996) and Russell and Norvig, (1995) 
and is a recognised issue with this algorithm. 
 
From tables 1 and 2 we can see that the GVI algorithm 
produces a workable policy that is less than optimal, but 
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converges at a low number of iterations. This means the 
algorithm should on average be quicker to run than VI 
because larger numbers of iterations require more processing 
time. Also a benefit of this algorithm is that it automatically 
adapts to the complexity of the game world, so it should 
always produce the best policy it can, without running any 
unnecessary iterations. The algorithm should always produce 
a workable policy, but it will not necessarily be the optimal 
policy. In our experiments above this seems to matter very 
little, because the hamming distance is very small, but on a 
large map (E.g. 20x20 or 40x40) this difference might 
become significant.  
 
We also conducted experiments on the reward values of cells 
to see how they affect an agent’s movement. These 
experiments showed that the affect a negative reward would 
have on an NPC depended on how optimal the policy was. If 
a zero threshold was used with VI, a small negative value 
(i.e. -0.02) for the cell property water would be enough to 
affect the NPCs behaviour so it would be likely to avoid 
water until it was necessary so go through it. However for 
less optimal policies this value would need to be slightly 
bigger to have a similar affect (i.e. -0.06). This affect is just 
like the one discussed in the paragraph above. Because the 
policy is not optimal the water (or enemy’s) effect on the 
game environment is lessened. Also it is worth noting that if 
the negative rewards are increased by too much this can also 
cause problems, because they can have too great an affect on 
the cell’s utility which can prevent the GVI algorithm from 
converging to a workable set of utilities. 
 
DISCUSSION 
 
The experiments conducted on the AI engine program have 
shown that MDPs using both VI and the newly introduced 
GVI algorithms can be used to create intelligent NPC 
behaviour. The movement produced by the AI engine 
appeared to the authors to be less scripted and deterministic 
than that in researched 2D style computer games. The AI 
engine also offers interesting environment features through 
creative use of reward values. This could make the MDPs AI 
engine interesting to computer game players and the 
computer game industry, because it offers a different 
approach to solving the problem of AI in 2D style games. 
 
The MDP AI engine with VI and GVI as an AI tool for NPC 
navigation offers game developers a different approach to 
applying AI to 2D style games. However from the results of 
this work and our observations we can see that there are 
limitations with this technique that need to be researched 
further. Firstly, even though the VI algorithm works in our 
AI engine (which has just 1 NPC), it is very processor 
intensive. The GVI algorithm does overcome this problem; 
however this algorithm would need to be tested further to 
prove its usefulness. Secondly, the experiments conducted 
here were only on 10x10 grids. This size grid is quite small 
for a game environment, so experiments would need to be 
conducted on larger grids to determine if the VI and GVI 
algorithms can execute quickly enough and the less than 
optimal policy for GVI is still viable. The hamming distance 
between the GVI algorithm policies and the optimal polices 
was quite small in our experiments; however it could be a lot 
larger in bigger game environments. 

CONCLUSIONS AND FUTURE WORK 
 
This paper has shown that Markov decision processes using 
Value iteration and the newly introduced GVI algorithm can 
be successfully applied to an AI computer game engine. The 
development of the AI engine and the experiments 
conducted on the AI engine allowed a greater understanding 
of this approach and the problems involved, in relation to 
computer games. 
 
There is plenty of scope for further work in this area. Firstly 
we intend to apply the AI engine to a 2D real time computer 
game to determine if the technique can operate successfully 
in this domain. Secondly we plan to extend the size of the 
game environments and confirm that the use of a less than 
optimal policy still produces a viable solution in larger 
environments. 
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