
USING VALUE ITERATION TO SOLVE SEQUENTIAL DECISION PROBLEMS IN GAMES

Thomas Hartley, Quasim Mehdi, Norman Gough
The Research Institute in Advanced Technologies (RIATec)

School of Computing and Information Technology
University Of Wolverhampton, UK, WV1 1EL

E-mail: T.Hartley2@wlv.ac.uk

KEYWORDS

Value iteration, artificial intelligence (AI), AI in computer
games.

ABSTRACT

Solving sequential decision problems in computer games,
such as non-player character (NPC) navigation, can be quite
a complex task. Current games tend to rely on scripts and
finite state machines (FSM) to control AI opponents. These
approaches however have shortcomings; as a result academic
AI techniques may be a more desirable solution to solve
these types of problems. This paper describes the process of
applying the value iteration algorithm to an AI engine, which
can be applied to a computer game. We also introduce a new
stopping criterion called game value iteration, which has
been designed for use in 2D real time computer games and
we discuss results from experiments conducted on the AI
engine. We also outline our conclusions which state that the
value iteration and the newly introduced game value iteration
algorithms can be successfully applied to intelligent NPC
behaviour in computer games; however there are certain
problems, such as execution speed, which need to be
addressed when dealing with real time games.

INTRODUCTION

Whilst playing computer games online against human
opponents, it became apparent that it was a more interesting
playing experience, than that of playing against non-player
characters (NPCs). The human opponents were more
difficult to anticipate and were more challenging, in
comparison to their NPC counterparts. As a result, we tend
only to play the single player aspect of a computer game a
handful of times before we feel the game’s gameplay
becomes predictable and easy to beat.

This is backed up by Jonathan Schaeffer (2001 in Spronck et
al., 2003) who states that the general dissatisfaction of game
players with the current levels of AI for computer controlled
opponents makes them prefer human controlled opponents.
Currently commercial computer game AI is almost
exclusively controlled by complex “manually-designed
scripts” (Spronck et al., 2002). This can result in poor AI or
“Artificial Stupidity” (Schaeffer, 2001 in Spronck et al.,
2002).

The predictability and any “holes” within a scripted
computer game can then be exploited by the human player
(Spronck et al., 2002). The game industry is however
constantly involved in employing more sophisticated
techniques for NPCs (Kellis, 2002), especially in light of the
increase in personal PC power, which enables more time to
be spent processing AI. Recent games, such as Black &

White (Lionhead, 2001) use learning techniques to create
unpredictable and unscripted actions. However most games
still do rely on scripts and would benefit from an
improvement in their AI.

These observations formed the basis of a research project
into the field of AI and computer game AI. The aims of this
project were to research computer games in order to shed
light on where computer game AI can be poor and to
research AI techniques to see if they might be able to be used
to improve a computer game’s AI. The objectives of the
project were the delivery of a computer game AI tool that
demonstrated how an AI technique could be implemented as
an AI engine and a computer game that demonstrated the
engine. This paper demonstrates how Markov decision
processes can be applied to a computer game AI engine, with
the intention of showing that this technique will be a useful
alternative to scripted approaches. This paper covers the
implementation of the AI engine; the implementation of the
computer game will be covered in our next paper.

MARKOV DECISION PROCESSES

Markov decision processes (MDPs) are a mathematical
framework for modelling sequential decision tasks /
problems (Bonet, 2002) under uncertainty. According to
Russell and Norvig, (1995), Kristensen (1996) and
Pashenkova and Rish (1996) early work conducted on the
subject was by R. Bellman (1957) and R. A. Howard (1960).

The technique works by splitting an environment into a set
of states. An NPC moves from one state to another until a
terminal state is reached. All information about each state in
the environment is fully accessible to the NPC. Each state
transition is independent of the previous environment states
or agent actions (Kaelbling and Littman, 1996). An NPC
observes the current state of the environment and chooses an
action. Nondeterministic effects of actions are described by
the set of transition probabilities (Pashenkova and Rish,
1996). These transition probabilities or a transition model
(Russell and Norvig, 1995) are a set of probabilities
associated with the possible transitions between states after
any given action (Russell and Norvig, 1995). For example
the probability of moving in one direction could be 0.8, but
there is a chance of moving right or left, each at a probability
of 0.1. There is a reward value for each state (or cell) in the
environment. This value gives an immediate reward for
being in a specific state.

A policy is a complete mapping from states to actions
(Russell and Norvig, 1995). A policy is like a plan, because
it is generated ahead of time, but unlike a plan it’s not a
sequence of actions the NPC must take, it is an action that an
NPC can take in all states (Yousof, 2002). The goal of MDPs
is to find an optimal policy, which maximises the expected

in4243
293

utility of each state (Pashenkova and Rish, 1996). The utility
is the value or usefulness of each state. Movement between
states can be made by moving to the state with the maximum
expected utility (MEU).

In order to determine an optimal policy, algorithms for
learning to behave in MDP environments have to be used
(Kaelbling and Littman, 1996). There are two algorithms that
are most commonly used to determine an optimal policy,
however other algorithms have been developed, such as the
Modified Policy Iteration (MPI) algorithm (Puterman and
Shin, 1978) and the Combined Value-Policy Iteration
(CVPI) algorithm (Pashenkova and Rish, 1996).

The two most commonly used algorithms for determining an
optimal policy have a foundation and take inspiration from
Dynamic Programming (Kaelbling and Littman, 1996)
which is also a technique for solving sequential decision
problems. In addition problems with delayed reinforcement
are well modelled as MDPs (Kaelbling and Littman, 1996).
There are many algorithms in the area of reinforcement
learning (For example: Q learning) that address MDP
problems (Mitchell, 1997), in fact understanding Finite
MDPs are all you need to understand 90% of modern
reinforcement learning (Sutton and Barto, 2000).

The two most commonly used algorithms are value iteration
(Bellman, 1957) and policy iteration (Howard, 1960). The
value iteration (VI) algorithm is an iterative process, which
calculates the utility of each state, which is then used to
select an optimal action (Russell and Norvig, 1995). The
iteration process stops when the utility values converge.
Convergence occurs when utilities in two successive
iterations are close enough (Pashenkova and Rish, 1996).
The degree of closeness can be defined by a threshold value.
This process was however, observed to be inefficient,
because the policy often becomes optimal long before the
utility estimates reach convergence (Russell and Norvig,
1995). Because of this another way of finding an optimal
policy was suggested. It is called policy iteration.

The policy iteration (PI) algorithm generates an initial
policy, which usually involves taking the rewards of states as
their utilities (Pashenkova and Rish, 1996). It then calculates
the utilities of each state, given that policy (Russell and
Norvig, 1995). This is called value determination
(Pashenkova and Rish, 1996; Russell and Norvig, 1995). It
then updates the policy at each state using the new utilities.
This is called policy improvement (Pashenkova and Rish,
1996). This process is repeated until the policy stabilises.
The process of value determination in policy iteration is
achieved by a system of linear equations (Pashenkova and
Rish, 1996).

This works well in small state spaces, but in larger state
spaces this system is not efficient. However arguments have
been made that promote each approach as being better for
large problems (Kaelbling and Littman, 1996). This is where
other algorithms such as modified policy iteration (MPI) can
be used to improve the process. Modified policy iteration
was introduced by Puterman and Shin (1978). In modified
policy iteration, value determination is similar to value
iteration, with the difference being that utilities are

determined for a fixed policy, not for all possible actions in
each state (Pashenkova and Rish, 1996). The problem with
this process is that the number of iterations of the value
determination process is not determined. Pashenkova and
Rish (1996) state that Puterman (1994) proposed the
following options that could be used to solve this problem.
Firstly, simply use a fixed number of iterations, secondly
choose the number of iterations according to a predefined
pattern and thirdly use the same process as value iteration.

COMPUTER GAMES & APPLICATIONS

There are many different types of commercial computer
games available today; these include Real Time Strategy
(RTS) games, sims games, God games and First person
shooters (FPS) (Tozour, 2002). The AI in these and other
type of games could possibly benefit from MDPs.

The most obvious computer game application for MDPs is a
grid world navigation example, where the game world is
split into a grid, which an NPC uses to navigate from one
location to another. This example can be found in most
literature on the subject including Russell and Norvig (1995)
and Mitchell (1997). The task of moving NPCs in these
types of game is in essence a sequential decision problem.
This is exactly what the MDPs framework solves. This use
of MDPs could be applied to RTS, FPS or 2D platform
games. Other applications of MDPs include decision-making
and planning. For this work we propose to apply MDPs to
NPC movement in a 2D style game, such as Pac-man
(Namco, 1980). We have chosen this type of game because it
operates in real time and offers plenty of scope to explore the
different features of MDPs.

DEVELOPMENT

In this section we present the development of the VI
algorithm as an AI engine for use in real time 2D style
computer games. The VI algorithm was implemented with a
convergence threshold as the stopping criterion. However we
also looked into creating our own stopping criterion, which
was based around VI and designed for speed and use in real
time computer games.

Value iteration using convergence as a stopping criterion is
designed to find the optimal policy. However a less than
optimal policy is acceptable in computer games if it speeds
up processing time and still allows the NPC to reach its goal
in an appropriate and acceptable manner. We have
developed a new stopping criterion, which is as simple and
quick as possible, but which still should achieve a workable
policy. We call the new stopping criterion “Game Value
Iteration” (GVI) and it works as follows: we simply wait for
each state to have been affected by the home state at least
once. This is achieved by checking if the number of states,
with utilities that are equal to or less than 0 (zero) are the
same after 2 successive iterations. All non-goal states have a
reward (cost), which is slightly negative depending on their
environment property (i.e. land, water etc.). Since utilities
initially equal rewards, a state’s utility will be negative until
it has been affected by the positive influence of the home
state.

in4243
294

As a result the number of cells with negative utilities will
decrease after each iteration. However some states may
always retain a negative utility, because they have larger
negative rewards due to their environment property and they
may be surrounded by states with similar environment
properties. Consequently when the number of states with
negative utilities stays the same for 2 successive iterations
we can say that the states are not optimal, but they should be
good enough for a workable policy to exist, which the NPC
can use to navigate the map. Before this point it is likely that
no workable policy for the entire environment would exist.
This stopping criterion assumes rewards can only be
negative and there is a positive terminal state which is equal
to 1. Also note that, checking if a state’s utility is greater
than 0 is not required for the terminal states, because their
utilities never change. When each state has been affected by
the home state at least once we can say that the states are not
optimal, but they should be good enough for a workable
policy to exist, which the NPC can use to navigate the map.

An AI engine program was developed in Microsoft Visual
Basic in conjunction with the AI engine. This program
contained the AI engine itself and an environment to test the
engine. The environment consisted of a top down view, just
like a 2D style game and was made up of a 10x10 grid of
cells, each cell in the grid having different properties
associated with it. For example a cell could have a land, wall
or water property. Figure 2 shows an example of how the
grid based environment would look. Figure 2 is based on an
example of this type of environment found in Russell and
Norvig (1995).

The properties of an environment are used by the NPC (i.e.
AI engine) to affect the reward value for each cell. For
example water could mean slower movement for the NPC,
so by giving cells with the water property an additional
negative reward value (i.e. –0.02) it will mean that the
reward for being in that cell is slightly less than cells with no
water property. When the utility value of each cell is created
the utility values of cells with the water property will be less
than those with no water property. So when an NPC makes a
choice of which cell to move to it will be less likely to move
to the cell that has the water property.

The NPC will be able to move in one of four directions
North, East, South, or West, which will supposedly move the
NPC one cell in the intended direction, but only with a
certain amount of probability (Pashenkova and Rish, 1996),
such as 0.8. However this will depend on the obstacles in
the grid such as a wall or the edge of the grid.

The NPC will begin in a start state, which can be any cell in
the grid, except the enemy cell or home cell. The terminal
states, where the simulation ends, are the home and the
enemy states. In 2D style game the home state for the NPCs
will be the human player. The home terminal state is the
positive terminal state for the NPC and the enemy terminal

state is the negative terminal state, which the NPC will
avoid.

IMPLEMENTATION

This section covers how MDPs were implemented as an AI
engine. As stated above the utility value of each cell in the
grid (game environment) was determined by using the value
iteration algorithm. We used two different stopping criteria:
utility convergence and our new stopping criterion, called
game value iteration, to ensure that each cell in the grid
creates a usable policy for the NPC.

When the utility values for each cell are initialised they are
initialised to the reward value of each cell. Each non-goal
state always has a slightly negative reward on top of any cell
property rewards. The cell(s) containing the enemy will have
a reward value of –1 and the cell containing the home (or
goal) will have a reward value of +1, regardless of the cell’s
other properties.

A schematic description of the GVI algorithm is given
below. The value iteration algorithm is implemented exactly
as it is in Russell and Norvig (1995). The GVI algorithm is
based on this algorithm.

 Home
 Wall
Start Enemy

N

Figure 1: Example of the grid based environment.

The step in the schematic description above, where the utility
values are determined is the first for loop just after the repeat
statement. The equation in that loop can also be seen below.

][max][][1 jUMiRiU
j

a
ija ∑+←

Where U1[i] is the new utility value estimate for a cell in the
grid and R[i] is the reward value. maxa is select the utility
that returns the maximum value. i is the index of all cells in
the grid and j is the index of the number of cells surrounding
i (i.e. possible moves, north, south, east, west). M is the
transition model (the probability of moving in a certain
direction) and U is the current utilities.

Given the value iteration equation above, the utilities for
each state can be determined, and given the fixed policy of
maximising expected utilities, an NPC will be able to make a
move in any state. No matter what the outcome of any action

in4243
295

is, the NPC will always know where to move next, by
selecting the cell that has the highest expected utility. Next
we are going to show an example of how the equation will
work in practice. It demonstrates for one iteration how the
utility value for one cell in the grid will be determined.

PA = 0.8.
PB = 0.1.
PC = 0.1.
PD = 0.0.

To work out the utility of cell 2,2 the following will be conducted:

Action N = PA * U1 + PB * U2 + PC * U4 + PD * U3.

Action E = PA * U2 + PB * U3 + PC * U1 + PD * U4.

Action S = PA * U3 + PB * U4 + PC * U2 + PD * U1.

Action W = PA * U4 + PB * U1 + PC * U3 + PD * U2.

U = Reward + The action that returns the maximum value.

This process is repeated for every cell in the grid, except for
the enemy’s cell(s), the home cell and any wall cells. If the
utility is being calculated for the cell next to a wall or a cell
on the edge of the grid, there will be no possible move in
those directions. If this occurs, then the utility value of the
cell whose utility is being calculated will be used. One
iteration is complete when every cell has been visited once.
The process is repeated until the stopping criterion is met.

EXPERIMENTAL RESULTS

Many different experiments were conducted on the AI
engine through the AI engine program. The results of these
experiments were used to help implement a computer game
and to validate our work. The parameters that were varied in
the experiments included the configuration of the maps (i.e.
locations of obstacles and goal states) and the reward values
associated with cell properties.

However the results discussed here mainly look at
determining the appropriate threshold value for VI,
determining whether the GVI algorithm works in practice
and comparing each algorithm’s performance. In our
experiments an NPC was setup to learn what action to take
in each cell by using the VI algorithm. Tables 1 and 2 show
some of the results of this work and screenshots of the test
maps used to produce the results in those tables.

For all experiments the following things were kept the same:
there were two goal states, +1 (home) and –1 (enemy), and
there was a cost of -0.0000001 for all non-goal states. The
probability of moving in the intended direction was 0.8 and
the size of the game world was 10x10.

The HD column in tables 1 and 2 stands for hamming
distance between the generated policy and the optimal

policy. The optimal policy is the policy obtained by running
the algorithm with the same initial data and maximum
precision (Pashenkova and Rish, 1996). The use of hamming
to determine the difference between a policy and an optimal
policy is based on that used in Pashenkova and Rish (1996).

Key
U = Utility.
P = Probability.

Table 2: The environment map and the results produced from experiments
conducted on the map.

Table 1: The environment map and the results produced from experiments
conducted on the map.

The maps used for the experiments above attempt to
represent a maze like world that you would expect to see in
2D style games. However we also experimented with
simpler and more complex maps. Tables 1 and 2 show that
the largest threshold, which produces an optimal policy, is
0.031250 (Table 1). However this threshold does not
produce an optimal policy in Table 2. This shows that the
utility thresholds, which produce an optimal policy, vary
from map to map. In general we observed that as map
complexity increased, they required more iterations and
smaller thresholds to achieve workable and optimal policies.
This could cause problems in computer games because maps
are constantly changing and vary from level to level. As a
result it’s reasonable to say that a conservative threshold
would have to be used to ensure that a map always
converged to an optimal or near optimal policy. Tables 1 and
2 also show that the utility values for the VI algorithm
converge after the policy has converged. This result is
consistent with previous work in the area, such as
Pashenkova and Rish (1996) and Russell and Norvig, (1995)
and is a recognised issue with this algorithm.

From tables 1 and 2 we can see that the GVI algorithm
produces a workable policy that is less than optimal, but

in4243
296

converges at a low number of iterations. This means the
algorithm should on average be quicker to run than VI
because larger numbers of iterations require more processing
time. Also a benefit of this algorithm is that it automatically
adapts to the complexity of the game world, so it should
always produce the best policy it can, without running any
unnecessary iterations. The algorithm should always produce
a workable policy, but it will not necessarily be the optimal
policy. In our experiments above this seems to matter very
little, because the hamming distance is very small, but on a
large map (E.g. 20x20 or 40x40) this difference might
become significant.

We also conducted experiments on the reward values of cells
to see how they affect an agent’s movement. These
experiments showed that the affect a negative reward would
have on an NPC depended on how optimal the policy was. If
a zero threshold was used with VI, a small negative value
(i.e. -0.02) for the cell property water would be enough to
affect the NPCs behaviour so it would be likely to avoid
water until it was necessary so go through it. However for
less optimal policies this value would need to be slightly
bigger to have a similar affect (i.e. -0.06). This affect is just
like the one discussed in the paragraph above. Because the
policy is not optimal the water (or enemy’s) effect on the
game environment is lessened. Also it is worth noting that if
the negative rewards are increased by too much this can also
cause problems, because they can have too great an affect on
the cell’s utility which can prevent the GVI algorithm from
converging to a workable set of utilities.

DISCUSSION

The experiments conducted on the AI engine program have
shown that MDPs using both VI and the newly introduced
GVI algorithms can be used to create intelligent NPC
behaviour. The movement produced by the AI engine
appeared to the authors to be less scripted and deterministic
than that in researched 2D style computer games. The AI
engine also offers interesting environment features through
creative use of reward values. This could make the MDPs AI
engine interesting to computer game players and the
computer game industry, because it offers a different
approach to solving the problem of AI in 2D style games.

The MDP AI engine with VI and GVI as an AI tool for NPC
navigation offers game developers a different approach to
applying AI to 2D style games. However from the results of
this work and our observations we can see that there are
limitations with this technique that need to be researched
further. Firstly, even though the VI algorithm works in our
AI engine (which has just 1 NPC), it is very processor
intensive. The GVI algorithm does overcome this problem;
however this algorithm would need to be tested further to
prove its usefulness. Secondly, the experiments conducted
here were only on 10x10 grids. This size grid is quite small
for a game environment, so experiments would need to be
conducted on larger grids to determine if the VI and GVI
algorithms can execute quickly enough and the less than
optimal policy for GVI is still viable. The hamming distance
between the GVI algorithm policies and the optimal polices
was quite small in our experiments; however it could be a lot
larger in bigger game environments.

CONCLUSIONS AND FUTURE WORK

This paper has shown that Markov decision processes using
Value iteration and the newly introduced GVI algorithm can
be successfully applied to an AI computer game engine. The
development of the AI engine and the experiments
conducted on the AI engine allowed a greater understanding
of this approach and the problems involved, in relation to
computer games.

There is plenty of scope for further work in this area. Firstly
we intend to apply the AI engine to a 2D real time computer
game to determine if the technique can operate successfully
in this domain. Secondly we plan to extend the size of the
game environments and confirm that the use of a less than
optimal policy still produces a viable solution in larger
environments.

REFERENCES

Bellman R. (1957) Dynamic Programming Princeton University Press,

Princeton, New Jersey.
Bonet B. (2002) An e-Optimal Grid-Based Algorithm for Partially

Observable Markov Decision Processes. in Proc. 19th Int. Conf. On
Machine Learning. Sydney, Australia, 2002. Morgan Kaufmann.
Pages 51-58.

Howard R. (1960). Dynamic Programming and Markov Processes.
Cambridge, MA: The MIT Press.

Kaelbling L. and Littman, M. (1996) Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, vol. 4, pp. 237-285.

Kellis E. (2002). An Evaluation of the Scientific Potential of Evolutionary
Artificial Life God-Games: Considering an Example Model for
Experiments and Justification. MSc. Thesis, University of Sussex.

Kristensen A. (1996), Textbook notes of herd management: Dynamic
programming and Markov decision processes
<http://www.prodstyr.ihh.kvl.dk/pdf/notat49.pdf> (accessed 24 April
2003).

Lionhead Studios / Electronic Arts (2001) Black & White.
<http://www.eagames.com/>.

Mitchell T. (1997). Machine Learning, McGraw Hill: New York.
Namco (1980), Pac-man. <http://www.namco.co.uk/>.
Pashenkova E. and Rish I. (1996) Value iteration and Policy iteration

algorithms for Markov decision problem.
<http://citeseer.nj.nec.com/cache/papers/cs/12181/ftp:zSzzSzftp.ics.uc
i.eduzSzpubzSzCSP-repositoryzSzpaperszSzmdp_report.pdf/value-
iteration-and-policy.pdf> (accessed 23 April 2003).

Puterman M. (1994) Markov decision processes: discrete stochastic
dynamic programming. New York: John Wiley & Sons.

Puterman M. and Shin M. (1978) Modified policy iteration algorithms for
discounted Markov decision processes. Management Science,
24:1127-1137.

Russell S. and Norvig P. (1995). Artificial Intelligence A modern Approach,
Prentice-Hall: New York.

Spronck P., Sprinkhuizen-Kuyper I. and Postma E. (2002). Evolving
Improved Opponent Intelligence. GAME-ON 2002 3rd International
Conference on Intelligent Games and Simulation (eds. Quasim Medhi,
Norman Gough and Marc Cavazza), pp. 94-98.

Spronck P., Sprinkhuizen-Kuyper I. and Postma E. (2003). Online
Adaptation of Game Opponent AI in Simulation and in Practice.
GAME-ON 2003 4th International Conference on Intelligent Games
and Simulation (eds. Quasim Medhi, Norman Gough and Stephane
Natkin), pp. 93-100.

Sutton R. and Baro A. (2000) Reinforcement Learning An Introduction.
London: The MIT Press.

Tozour P. (2002) The Evolution of Game AI in Steve Rabin (ed) AI Game
Programming Wisdom, Charles River Media, pp. 3-15.

Yousof S. (2002) MDP Presentation CS594 Automated Optimal Decision
Making, <http://www.cs.uic.edu/~piotr/cs594/ Sohail.ppt> (accessed
27 April 2003).

in4243
297

