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ABSTRACT 
 
This paper presents the outcomes of a research project into 
the field of artificial intelligence (AI) and computer game 
AI. The project considered the problem of applying AI 
techniques to computer games. Current commercial 
computer games tend to use complex scripts to control AI 
opponents. This can result in poor and predictable gameplay. 
The use of academic AI techniques is a possible solution to 
overcome these shortcomings. This paper describes the 
process of applying Markov decision processes (MDPs) 
using the value iteration algorithm to a 2D real time 
computer game. We also introduce a new stopping criterion 
for value iteration, which has been designed for use in 
computer games and we discuss results from experiments 
conducted on the MDPs AI engine. This paper also outlines 
conclusions about how successful MDPs are in relation to a 
real computer game AI engine and how useful they might be 
to computer games developers. 
 
INTRODUCTION 
 
Artificial Intelligence (AI) is required in some form or 
another for practically all commercially released computer 
games today. Current commercial AI is almost exclusively 
controlled by scripts or finite state machines (Cass, 2002; 
Nareyek, 2004; Spronck et al., 2002). The use of these 
techniques can result in poor AI, which is predicable, less 
believable (Thurau et al., 2003) and can be exploited by the 
human player (Spronck et al., 2002). This reduces the 
enjoyment for the human player and makes them prefer 
human controlled opponents (Schaeffer, 2001 in Spronck et 
al., 2003). 
 
The game industry is however constantly involved in 
employing more sophisticated AI techniques for non player 
characters (NPCs) (Kellis, 2002), especially in light of the 
increase in personal PC power, which enables more time to 
be spent processing AI. Recent games, such as Black & 
White (Lionhead, 2001) use learning techniques to create 
unpredictable and unscripted actions. However most games 
still do rely on scripts and would benefit from an 
improvement in their AI. This makes computer games an 
ideal platform to experiment with academic AI; in fact the 
researcher John Laird states that interactive computer games 
are the killer application for human level AI (Laird and Lent, 
2000). 
 
These and other observations formed the basis of a research 
project into the field of AI and computer game AI. The 

objectives of the project were the delivery of a computer 
game AI engine that demonstrated how an AI technique 
could be implemented as a game AI engine and a basic 
computer game that demonstrated the engine. The computer 
game was in the style of a researched computer game, which 
had been identified as needing improvement. 
 
In our previous work Hartley et al. (2004) we presented our 
implementation of Markov decision processes (MDPs) and 
the value iteration (VI) algorithm in a computer game AI 
engine. In this paper we are presenting an implementation of 
the MDP AI engine we developed in a 2D Pac-man (Namco, 
1980) style real time computer game. We are also going to 
answer a number of the questions raised in our previous 
work; namely can the AI engine we developed operate 
successfully in larger game environments and will the use of 
a less than optimal policy still produce a viable solution in 
larger environments. 
 
PAC-MAN – A REAL TIME 2D COMPUTER GAME 
 
The Pac-man computer game is a classic arcade game, which 
was developed by Namco in 1980. The premise of the game 
is simple; a player must guide Pac-man, which is a yellow 
ball with an eye and a mouth, around a maze, while eating 
dots and avoiding four ghosts, each of which has different 
levels of hunting ability (Hunter, 2000). The ghosts form the 
AI element of the Pac-man game. They start in a cage in the 
middle of the maze, they then have to escape from the cage 
and get to the Pac-man character. If Pac-man and a ghost 
touch, the player will lose a life. However there are four 
large dots in each corner of the maze. If Pac-man eats one of 
them, for a brief period he will be able to eat the ghost. If 
this happens the ghost’s eye moves back to the cage in the 
centre and the ghost is reincarnated (Hunter, 2000). Figure 1 
demonstrates a Pac-man game that is about to finish because 
Pac-man is about to be touched by one of the four ghosts and 
has no more lives left. 
 
 
 
 
 
 
 
 
 
 
 
 
The Pac-man computer game was identified as needing 
improvement primarily because the ghosts’ movement in the 
game appeared predictable. This assertion is backed up by 
Luke and Spector (1996), who state, “…that Pac-man would 
be a good application for genetic algorithms to improve the 

Figure 1: A screenshot of Microsoft Return of the Arcade Pac-man game. 
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abilities of the ghosts.”. However this is also contradicted by 
Bonet and Stauffer (2001) who state that the “…core gamer 
has no problem with a game like Pac-man, because even 
though Pac-man is a deterministic game that behaves exactly 
the same way every time you play it, it offers a huge amount 
of gameplay.”. This statement indicates that even though the 
Pac-man game might have poor AI, it is not necessarily a 
problem because there are hundreds of levels and this type of 
AI fits well with this type of game. Also this type of AI is 
what the game player expects. 

Every time a gem is collected the player scores some points. 
When all gems have been collected the player moves onto 
the next level. The game is over when all the human players 
lives (of which there are 3) are lost.  
 
IMPLEMENTATION 
 
In this section we present the implementation of the 
proposed computer game using the MDP AI engine. We also 
discuss some of the questions raised in our previous work; in 
particular can the AI engine operate successfully in larger 
game environments. 

 
This is true to a certain extent; it is reasonable to say that 
predictability can be fun or not fun depending on how the 
game plays. But the Pac-man game was designed quite a few 
years ago for arcade machines (Hunter, 2000), so the Pac-
man AI is quite simplistic and is orientated so that players 
will eventually die and put more money in the machine in 
order to continue. As a result of this it still would be useful 
to improve the Pac-man game AI and games like it for the 
home computer market, because the monetary aspect of 
arcade machines is not a factor any more and game players 
today expect more from a computer game’s AI. In addition 
the Pac-man game also offers an excellent real time 
environment in which to test the MDPs AI engine because 
the game environment can easily be divided into a finite set 
of states. 

 
Markov Decision Processes 
 
Markov decision processes (MDPs) are a mathematical 
framework for modelling sequential decision tasks / 
problems (Bonet, 2002) under uncertainty. According to 
Russell and Norvig, (1995), Kristensen (1996) and 
Pashenkova and Rish (1996) early work conducted on the 
subject was by R. Bellman (1957) and R. A. Howard (1960). 
The subject is discussed in detail in our previous work 
Hartley et al. (2004). Here we give a description of the 
framework in relation to the computer game we developed. 
 
The technique works by splitting an environment into a set 
of states. An NPC moves from one state to another until a 
terminal state is reached (i.e. a goal or an enemy). All 
information about each state in the environment is fully 
accessible to the NPC. Each state transition is independent of 
the previous environment states or agent actions (Kaelbling 
and Littman, 1996). An NPC observes the current state of the 
environment and chooses an action. Nondeterministic effects 
of actions are described by the set of transition probabilities 
(Pashenkova and Rish, 1996). These transition probabilities 
or a transition model (Russell and Norvig, 1995) are a set of 
probabilities associated with the possible transitions between 
states after any given action (Russell and Norvig, 1995). For 
example the probability of moving in one direction could be 
0.8, but there is a chance of moving right or left, each at a 
probability of 0.1. There is a reward value for each state (or 
cell) in the environment. This value gives an immediate 
reward for being in a specific state. 

 
GAME DESCRIPTION 
 
In order to experiment with and demonstrate how the Pac-
man computer game could use and benefit from the AI 
engine, a simple Pac-man style action game, called Gem 
Raider was developed. Figure 2 contains a screenshots of the 
game in action. The purpose of the Gem Raider game was to 
demonstrate the features of the MDP AI engine we 
developed in a real time 2D Pac-man style environment. The 
Gem Raider game is not a direct clone of the Pac-man game, 
but general comparisons of the abilities of their AI’s can still 
be made. 
 
 
 
 

  
A policy is a complete mapping from states to actions 
(Russell and Norvig, 1995). A policy is like a plan, because 
it is generated ahead of time, but unlike a plan it’s not a 
sequence of actions the NPC must take, it is an action that an 
NPC can take in all states (Yousof, 2002). The goal of MDPs 
is to find an optimal policy, which maximises the expected 
utility of each state (Pashenkova and Rish, 1996). The utility 
is the value or usefulness of each state. Movement between 
states can be made by moving to the state with the maximum 
expected utility (MEU). 

 
 
 
 
 
 
 
 
The Gem Raider game revolves around a Pac-man style 
character called Shingo. The user controls Shingo in order to 
collect gems, which are dotted about the game environment. 
Each game environment (or map) is a square area that 
contains environment properties such as water or obstacles, 
such as walls. The player also has to avoid 3 guards. The 
guards represent the Pac-man ghosts and their job is to 
pursue and kill Shingo before he collects all the gems in the 
level. In addition to the guards there are also enemies that 
take the form of sticks of dynamite and have to be avoided 
by both Shingo and the gem guards. 

Figure 2: A Screenshot of the Gem Raider game. 

 
In order to determine an optimal policy, algorithms for 
learning to behave in MDP environments have to be used 
(Kaelbling and Littman, 1996). There are two algorithms that 
are most commonly used to determine an optimal policy, 
value iteration (Bellman, 1957) and policy iteration 
(Howard, 1960). However other algorithms have been 
developed, such as the Modified Policy Iteration (MPI) 
algorithm (Puterman and Shin, 1978) and the Combined 
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Value-Policy Iteration (CVPI) algorithm (Pashenkova and 
Rish, 1996). 
 
In our previous work Hartley et al. (2004) we also 
implemented a variation on the VI algorithm, which was 
designed to reduce the execution time of the process and still 
produce a valid policy, which an NPC can use to navigate 
the environment. We called the new stopping criterion 
“Game Value Iteration” (GVI) and it works as follows: we 
simply wait for each state to have been affected by the home 
state at least once. This is achieved by checking if the 
number of states, with utilities that are equal to or less than 0 
(zero) are the same after 2 successive iterations. All non-goal 
states have a reward (cost), which is slightly negative 
depending on their environment property (i.e. land, water 
etc.). Since utilities initially equal rewards, a state’s utility 
will be negative until it has been affected by the positive 
influence of the home (goal) state.  
 
As a result the number of cells with negative utilities will 
decrease after each iteration. However some states may 
always retain a negative utility, because they have larger 
negative rewards due to their environment property and they 
may be surrounded by states with similar environment 
properties. Consequently when the number of states with 
negative utilities stays the same for 2 successive iterations 
we can say that the states are not optimal, but they should be 
good enough for a workable policy to exist, which the NPC 
can use to navigate the map. Before this point it is likely that 
no workable policy for the entire environment would exist. 
This stopping criterion assumes rewards can only be 
negative and there is a positive terminal state which is equal 
to 1. Also note that, checking if a state’s utility is greater 
than 0 is not required for the terminal states, because their 
utilities never change. 
 
The AI Engine 
 
In addition to developing the computer game we also 
experimented with increasing the size of the grids used by 
the AI engine, in order to assess how VI convergence and the 
GVI algorithm are affected. The AI engine can now 
represent game worlds at the size of 10x10, 20x20 and 
40x40. Due to the processor intensive nature of MDP we 
decided to experiment with learning partial sections of the 
game world, which are around an NPCs location. This 
should significantly reduce the number of iterations required 
to learn an instance of a game map, which is an important 
factor in real time games. 
 
The Game 
 
The game was developed in Microsoft Visual Basic 
specifically for this application. The relevant sections of the 
AI engine source code were imported into the game and a 
game engine was developed. The game runs in real time and 
it allows the user to swap between the VI and GVI 
algorithms and specify whether the algorithms should use the 
whole map or a partial section of the map.  
 
The game world is split up into a grid of 20x20 cells. Each 
cell in the grid has a property associated with it, such as land, 
water or an obstacle. The human player can move freely 

through the game world, but they cannot move through 
obstacles and water slows them down. The NPCs in the 
game can also move freely around the game world, but not 
through obstacles and only slowly through water. Each NPC 
in the game has a set of reward values, which it associates, 
with each cell property. The properties of the environment 
are used by each NPC (i.e. the AI engine) as the reward 
value for each cell. For example water means slower 
movement for the NPC, so by giving cells with the water 
property a more negative reward value it would mean that 
the reward for being in that cell is slightly less than cells 
with no water property. When the utility value of each cell is 
created the utility values of cells with the water property will 
be less than those with no water property. So when an NPC 
makes a choice of which cell to move to it will be less likely 
to move to the cell that has the water property. This means 
the NPCs in the game should produce more humanlike 
movement because they take into account environment 
variables, which could be considered as having a poor effect 
on their progress. 
 
EXPERIMENTAL RESULTS 
 
In the introduction we stated that we were going to answer a 
number of questions raised in our previous work and 
demonstrate MDPs being applied to a 2D Pac-man style 
computer game. The first phase of experiments involved 
increasing the size of the environments used by the AI 
engine, to 20x20 and 40x40 cells. 
 
For all experiments in this phase of testing the following 
things were kept the same: there were two terminal states, +1 
(goal) and –1 (enemy), and there was a slight cost of -
0.00001 for all non-goal states. The probability of moving in 
the intended direction was set to 0.8. The maps used for 
these experiments attempt to represent a limited maze like 
world that you would expect to see in a Pac-man style game. 
However they were kept relatively simple so their size could 
be increased, while the map itself remained the same. We 
also experimented with simpler and more complex maps. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Screenshots of the 20x20 and 10x10 maps used to produce the 
results in table 1. 

Grid Size No. of iterations to Convergence 
 VI (OP) GVI HD 
10x10 63 18 0 
20x20 83 38 0 
40x40 130 79 0 

 
 Table 1: Results from experiments conducted on different size environments. 

The HD column in table 1 stands for hamming distance 
between the GVI generated policy and the optimal policy. 
The optimal policy (OP) is the policy obtained by running 
the VI algorithm with the same initial data and maximum 
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precision (Pashenkova and Rish, 1996). The use of hamming 
to determine the difference between a policy and an optimal 
policy is based on that used in Pashenkova and Rish (1996). 
 
From table 1 we can see that as the size of the grid increases 
the number of iterations required for convergence also 
increases, but it appears that the HD distance of the GVI 
algorithm is not affected by the increase in the grid size. This 
demonstrates that the GVI algorithm still produces viable 
policies, even in larger environments. Similar results were 
also found on different variations of maps. 
 
The second phase of experiments looked at learning only 
partial sections of maps, around the NPCs location instead of 
the whole environment. It can be seen from the first 
experiments that as the size of the map increases the number 
of iterations required to converge the utility values also 
increases. In real time games this may prove processor 
intensive, especially if there is more than one NPC with their 
own set of rewards and utilities. We experimented with two 
different sized partial sections (5x5 and 7x7) around the 
NPCs location. Each cell within the partial area was treated 
normally, except if the home cell was not in the selection. If 
this was the case a new home cell was set.  
 
In order to achieve this, for each accessible state within the 
region, the Euclidean metric between it and the goal was 
calculated. The state with the smallest value was set as the 
temporary home cell. If the Euclidian metric values were 
equal then a state was randomly selected. After the NPC 
moved one step the region and goal position were re-
calculated and the new utilities generated. The map used for 
these experiments (figure 4) was a recreation of a map found 
in the Pac-man game.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Region Size Average No. of iterations to Convergence  
 VI (OP) GVI 
5x5 43.1 6.8 
7x7 48.1 9.7 

 
 
 
The results from the second phase of experiments were 
initially promising. Table 2 shows that the use of regions 
speeds up convergence quite considerably. However this 
seems to be at the expenses of NPC behaviour. After 
analysing the movement of the NPC it generally appeared to 
be less direct than when the whole map was taken into 
account and environment properties had very little affect on 
its behaviour. This decrease in movement quality is 
extremely undesirable because one of the objectives of this 

research is to produce better quality, more humanlike 
behaviour in computer game NPCs. We also found that in 
complex maps the technique tends to need more information 
than that provided by the region area to solve which state 
should be selected as the temporary home state. For example 
a U-shape area in an environment may trap an NPC if it 
cannot view states outside the area. We overcame this 
problem to a certain extent, by only allowing the use of Pac-
man style maps which do not have dead ends and by 
recording the NPCs last position in order to prevent it from 
moving back on itself. 
 
The third phase of experiments looked at how successful 
MDPs were when applied to a real time 2D computer game. 
When running the VI algorithm in the Gem Raider game we 
experimented with a relatively conservative threshold of 
0.001 and 0 (zero). We varied the rewards for each gem 
guard in order to achieve different types of behaviour.  
 
The experiments conducted on the Gem Raider game were 
focused on confirming that the AI engine would work in a 
game environment similar to Pac-man and produce 
intelligent behaviour. It is however difficult to determine 
whether the Gem Raider game specifically offers an 
improvement over the Pac-man game AI for a number of 
reasons, in particular as discussed above, because the Gem 
Raider game is not an exact clone of Pac-man and the quality 
of the Pac-man AI is a subjective issue. From our 
observations the NPCs in the Gem Raider game appeared to 
produce intelligent behaviour, which reacted to the dynamic, 
constantly changing game environments. Some examples of 
this behaviour include the gem guards appearing to take into 
account and react to environment properties. In our opinions 
the behaviour produced by this game appeared to be more 
intelligent than the NPC behaviour produced by the Pac-man 
game. However further work, such as a survey, would be 
necessary to confirm this assertion. 
 
In terms of performance the GVI algorithm performed much 
better than the VI algorithm. When running the VI algorithm 
there was a noticeable slow down while the utilities were 
being calculated. To a certain extent this problem could be 
overcome by implementing the technique in a more 
optimised programming language such as C++, however it 
highlights the problem that this approach is processor 
intensive. Figure 4: Screenshot of the map used to produce the results for the region 

experiments.  
DISCUSION 
 
The results presented in this work show that on different size 
grids the GVI algorithm can be used to produce intelligent 
NPC behaviour in less iterations that the VI algorithm. After 
observing the movement produced by the AI engine we 
found that when only partial sections of an environment 
were used NPC movement was less effective and took less 
account of the environment properties. This is an undesirable 
consequence as it results in the NPC appearing less 
intelligent. 

Table 2: Results from experiments conducted on different region sizes 
around the NPCs location.  

We have also shown how MDPs using the VI and GVI 
algorithm can be applied to 2D real time computer games, 
such as Pac-man. Applying this technique to these types of 
games has proved relatively successful. The GVI algorithm 
offers a more suited stopping criterion for computer games, 
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as it automatically converges to a usable policy in a very 
small number of iterations. The VI algorithm is less suited to 
this type of environment because it requires a fixed number 
of iterations or a convergence threshold, both of which can 
be problematic in dynamic and constantly changing 
environments. 
 
When implementing these algorithms in a 2D real time 
computer game the key factor to consider is processing 
constraints. If each NPC within the game requires individual 
rewards and utilities, then the time it takes to generate the 
utilities could be inhibitive to the playing of the game. A 
solution to this problem would be to determine only a part of 
the game environment, however as we have demonstrated 
here this impacts greatly on the advantages of the technique. 
Other approaches such as fixed regions or a number of NPCs 
making use of the same set utilities may solve this problem. 
However as long as processing power increases the use of 
this technique will become a more interesting proposition for 
the development of unscripted NPC navigation in real time 
computer games. 
 
CONCLUSIONS AND FUTURE WORK 
 
In our previous work we examined how MDPs using the VI 
and GVI algorithms could be applied to an AI engine that 
was suitable for use in a 2D real time computer game. This 
paper has continued this work and shown that these 
algorithms can be relatively successfully applied to 2D style 
games. The results from the experiments conducted here are 
very promising and show that even though the GVI 
algorithm produces a less that optimal utilities it still is 
effective, even in large game environments. The results from 
the Gem Raider game experiments have shown that it is 
indeed feasible to apply MDPs using GVI to real time 
computers, such as Pac-man. However the technique is 
computationally expensive and as a result may prove 
unfeasible for some computer games. 
 
Further work in this area will involve exploring other 
algorithms such as policy iteration, modified policy iteration 
and reinforcement learning (Sutton and Barto, 2000) in 
relation to computer games and comparing them to the GVI 
algorithm. Other interesting areas to investigate include 
applying the technique to other types of games and applying 
the technique to other types of problems, for example state 
machines (Sutton and Barto, 2000). The work conducted 
here could benefit the application of MDPs to other types of 
problems, for example state machines in 3D shoot-em ups 
and real time strategy games (Tozour, 2002). However 
applying these techniques to NPC navigation in these types 
of games may only offer limited use. 
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