
APPLYING MARKOV DECISION PROCESSES TO 2D REAL TIME GAMES

Thomas Hartley, Quasim Mehdi, Norman Gough
The Research Institute in Advanced Technologies (RIATec)

School of Computing and Information Technology
University Of Wolverhampton, UK, WV1 1EL

E-mail: T.Hartley2@wlv.ac.uk

KEYWORDS

Markov decision processes, value iteration, artificial
intelligence (AI), AI in computer games.

ABSTRACT

This paper presents the outcomes of a research project into
the field of artificial intelligence (AI) and computer game
AI. The project considered the problem of applying AI
techniques to computer games. Current commercial
computer games tend to use complex scripts to control AI
opponents. This can result in poor and predictable gameplay.
The use of academic AI techniques is a possible solution to
overcome these shortcomings. This paper describes the
process of applying Markov decision processes (MDPs)
using the value iteration algorithm to a 2D real time
computer game. We also introduce a new stopping criterion
for value iteration, which has been designed for use in
computer games and we discuss results from experiments
conducted on the MDPs AI engine. This paper also outlines
conclusions about how successful MDPs are in relation to a
real computer game AI engine and how useful they might be
to computer games developers.

INTRODUCTION

Artificial Intelligence (AI) is required in some form or
another for practically all commercially released computer
games today. Current commercial AI is almost exclusively
controlled by scripts or finite state machines (Cass, 2002;
Nareyek, 2004; Spronck et al., 2002). The use of these
techniques can result in poor AI, which is predicable, less
believable (Thurau et al., 2003) and can be exploited by the
human player (Spronck et al., 2002). This reduces the
enjoyment for the human player and makes them prefer
human controlled opponents (Schaeffer, 2001 in Spronck et
al., 2003).

The game industry is however constantly involved in
employing more sophisticated AI techniques for non player
characters (NPCs) (Kellis, 2002), especially in light of the
increase in personal PC power, which enables more time to
be spent processing AI. Recent games, such as Black &
White (Lionhead, 2001) use learning techniques to create
unpredictable and unscripted actions. However most games
still do rely on scripts and would benefit from an
improvement in their AI. This makes computer games an
ideal platform to experiment with academic AI; in fact the
researcher John Laird states that interactive computer games
are the killer application for human level AI (Laird and Lent,
2000).

These and other observations formed the basis of a research
project into the field of AI and computer game AI. The

objectives of the project were the delivery of a computer
game AI engine that demonstrated how an AI technique
could be implemented as a game AI engine and a basic
computer game that demonstrated the engine. The computer
game was in the style of a researched computer game, which
had been identified as needing improvement.

In our previous work Hartley et al. (2004) we presented our
implementation of Markov decision processes (MDPs) and
the value iteration (VI) algorithm in a computer game AI
engine. In this paper we are presenting an implementation of
the MDP AI engine we developed in a 2D Pac-man (Namco,
1980) style real time computer game. We are also going to
answer a number of the questions raised in our previous
work; namely can the AI engine we developed operate
successfully in larger game environments and will the use of
a less than optimal policy still produce a viable solution in
larger environments.

PAC-MAN – A REAL TIME 2D COMPUTER GAME

The Pac-man computer game is a classic arcade game, which
was developed by Namco in 1980. The premise of the game
is simple; a player must guide Pac-man, which is a yellow
ball with an eye and a mouth, around a maze, while eating
dots and avoiding four ghosts, each of which has different
levels of hunting ability (Hunter, 2000). The ghosts form the
AI element of the Pac-man game. They start in a cage in the
middle of the maze, they then have to escape from the cage
and get to the Pac-man character. If Pac-man and a ghost
touch, the player will lose a life. However there are four
large dots in each corner of the maze. If Pac-man eats one of
them, for a brief period he will be able to eat the ghost. If
this happens the ghost’s eye moves back to the cage in the
centre and the ghost is reincarnated (Hunter, 2000). Figure 1
demonstrates a Pac-man game that is about to finish because
Pac-man is about to be touched by one of the four ghosts and
has no more lives left.

The Pac-man computer game was identified as needing
improvement primarily because the ghosts’ movement in the
game appeared predictable. This assertion is backed up by
Luke and Spector (1996), who state, “…that Pac-man would
be a good application for genetic algorithms to improve the

Figure 1: A screenshot of Microsoft Return of the Arcade Pac-man game.

in4243
55

abilities of the ghosts.”. However this is also contradicted by
Bonet and Stauffer (2001) who state that the “…core gamer
has no problem with a game like Pac-man, because even
though Pac-man is a deterministic game that behaves exactly
the same way every time you play it, it offers a huge amount
of gameplay.”. This statement indicates that even though the
Pac-man game might have poor AI, it is not necessarily a
problem because there are hundreds of levels and this type of
AI fits well with this type of game. Also this type of AI is
what the game player expects.

Every time a gem is collected the player scores some points.
When all gems have been collected the player moves onto
the next level. The game is over when all the human players
lives (of which there are 3) are lost.

IMPLEMENTATION

In this section we present the implementation of the
proposed computer game using the MDP AI engine. We also
discuss some of the questions raised in our previous work; in
particular can the AI engine operate successfully in larger
game environments.

This is true to a certain extent; it is reasonable to say that
predictability can be fun or not fun depending on how the
game plays. But the Pac-man game was designed quite a few
years ago for arcade machines (Hunter, 2000), so the Pac-
man AI is quite simplistic and is orientated so that players
will eventually die and put more money in the machine in
order to continue. As a result of this it still would be useful
to improve the Pac-man game AI and games like it for the
home computer market, because the monetary aspect of
arcade machines is not a factor any more and game players
today expect more from a computer game’s AI. In addition
the Pac-man game also offers an excellent real time
environment in which to test the MDPs AI engine because
the game environment can easily be divided into a finite set
of states.

Markov Decision Processes

Markov decision processes (MDPs) are a mathematical
framework for modelling sequential decision tasks /
problems (Bonet, 2002) under uncertainty. According to
Russell and Norvig, (1995), Kristensen (1996) and
Pashenkova and Rish (1996) early work conducted on the
subject was by R. Bellman (1957) and R. A. Howard (1960).
The subject is discussed in detail in our previous work
Hartley et al. (2004). Here we give a description of the
framework in relation to the computer game we developed.

The technique works by splitting an environment into a set
of states. An NPC moves from one state to another until a
terminal state is reached (i.e. a goal or an enemy). All
information about each state in the environment is fully
accessible to the NPC. Each state transition is independent of
the previous environment states or agent actions (Kaelbling
and Littman, 1996). An NPC observes the current state of the
environment and chooses an action. Nondeterministic effects
of actions are described by the set of transition probabilities
(Pashenkova and Rish, 1996). These transition probabilities
or a transition model (Russell and Norvig, 1995) are a set of
probabilities associated with the possible transitions between
states after any given action (Russell and Norvig, 1995). For
example the probability of moving in one direction could be
0.8, but there is a chance of moving right or left, each at a
probability of 0.1. There is a reward value for each state (or
cell) in the environment. This value gives an immediate
reward for being in a specific state.

GAME DESCRIPTION

In order to experiment with and demonstrate how the Pac-
man computer game could use and benefit from the AI
engine, a simple Pac-man style action game, called Gem
Raider was developed. Figure 2 contains a screenshots of the
game in action. The purpose of the Gem Raider game was to
demonstrate the features of the MDP AI engine we
developed in a real time 2D Pac-man style environment. The
Gem Raider game is not a direct clone of the Pac-man game,
but general comparisons of the abilities of their AI’s can still
be made.

A policy is a complete mapping from states to actions
(Russell and Norvig, 1995). A policy is like a plan, because
it is generated ahead of time, but unlike a plan it’s not a
sequence of actions the NPC must take, it is an action that an
NPC can take in all states (Yousof, 2002). The goal of MDPs
is to find an optimal policy, which maximises the expected
utility of each state (Pashenkova and Rish, 1996). The utility
is the value or usefulness of each state. Movement between
states can be made by moving to the state with the maximum
expected utility (MEU).

The Gem Raider game revolves around a Pac-man style
character called Shingo. The user controls Shingo in order to
collect gems, which are dotted about the game environment.
Each game environment (or map) is a square area that
contains environment properties such as water or obstacles,
such as walls. The player also has to avoid 3 guards. The
guards represent the Pac-man ghosts and their job is to
pursue and kill Shingo before he collects all the gems in the
level. In addition to the guards there are also enemies that
take the form of sticks of dynamite and have to be avoided
by both Shingo and the gem guards.

Figure 2: A Screenshot of the Gem Raider game.

In order to determine an optimal policy, algorithms for
learning to behave in MDP environments have to be used
(Kaelbling and Littman, 1996). There are two algorithms that
are most commonly used to determine an optimal policy,
value iteration (Bellman, 1957) and policy iteration
(Howard, 1960). However other algorithms have been
developed, such as the Modified Policy Iteration (MPI)
algorithm (Puterman and Shin, 1978) and the Combined

in4243
56

Value-Policy Iteration (CVPI) algorithm (Pashenkova and
Rish, 1996).

In our previous work Hartley et al. (2004) we also
implemented a variation on the VI algorithm, which was
designed to reduce the execution time of the process and still
produce a valid policy, which an NPC can use to navigate
the environment. We called the new stopping criterion
“Game Value Iteration” (GVI) and it works as follows: we
simply wait for each state to have been affected by the home
state at least once. This is achieved by checking if the
number of states, with utilities that are equal to or less than 0
(zero) are the same after 2 successive iterations. All non-goal
states have a reward (cost), which is slightly negative
depending on their environment property (i.e. land, water
etc.). Since utilities initially equal rewards, a state’s utility
will be negative until it has been affected by the positive
influence of the home (goal) state.

As a result the number of cells with negative utilities will
decrease after each iteration. However some states may
always retain a negative utility, because they have larger
negative rewards due to their environment property and they
may be surrounded by states with similar environment
properties. Consequently when the number of states with
negative utilities stays the same for 2 successive iterations
we can say that the states are not optimal, but they should be
good enough for a workable policy to exist, which the NPC
can use to navigate the map. Before this point it is likely that
no workable policy for the entire environment would exist.
This stopping criterion assumes rewards can only be
negative and there is a positive terminal state which is equal
to 1. Also note that, checking if a state’s utility is greater
than 0 is not required for the terminal states, because their
utilities never change.

The AI Engine

In addition to developing the computer game we also
experimented with increasing the size of the grids used by
the AI engine, in order to assess how VI convergence and the
GVI algorithm are affected. The AI engine can now
represent game worlds at the size of 10x10, 20x20 and
40x40. Due to the processor intensive nature of MDP we
decided to experiment with learning partial sections of the
game world, which are around an NPCs location. This
should significantly reduce the number of iterations required
to learn an instance of a game map, which is an important
factor in real time games.

The Game

The game was developed in Microsoft Visual Basic
specifically for this application. The relevant sections of the
AI engine source code were imported into the game and a
game engine was developed. The game runs in real time and
it allows the user to swap between the VI and GVI
algorithms and specify whether the algorithms should use the
whole map or a partial section of the map.

The game world is split up into a grid of 20x20 cells. Each
cell in the grid has a property associated with it, such as land,
water or an obstacle. The human player can move freely

through the game world, but they cannot move through
obstacles and water slows them down. The NPCs in the
game can also move freely around the game world, but not
through obstacles and only slowly through water. Each NPC
in the game has a set of reward values, which it associates,
with each cell property. The properties of the environment
are used by each NPC (i.e. the AI engine) as the reward
value for each cell. For example water means slower
movement for the NPC, so by giving cells with the water
property a more negative reward value it would mean that
the reward for being in that cell is slightly less than cells
with no water property. When the utility value of each cell is
created the utility values of cells with the water property will
be less than those with no water property. So when an NPC
makes a choice of which cell to move to it will be less likely
to move to the cell that has the water property. This means
the NPCs in the game should produce more humanlike
movement because they take into account environment
variables, which could be considered as having a poor effect
on their progress.

EXPERIMENTAL RESULTS

In the introduction we stated that we were going to answer a
number of questions raised in our previous work and
demonstrate MDPs being applied to a 2D Pac-man style
computer game. The first phase of experiments involved
increasing the size of the environments used by the AI
engine, to 20x20 and 40x40 cells.

For all experiments in this phase of testing the following
things were kept the same: there were two terminal states, +1
(goal) and –1 (enemy), and there was a slight cost of -
0.00001 for all non-goal states. The probability of moving in
the intended direction was set to 0.8. The maps used for
these experiments attempt to represent a limited maze like
world that you would expect to see in a Pac-man style game.
However they were kept relatively simple so their size could
be increased, while the map itself remained the same. We
also experimented with simpler and more complex maps.

Figure 3: Screenshots of the 20x20 and 10x10 maps used to produce the
results in table 1.

Grid Size No. of iterations to Convergence
 VI (OP) GVI HD
10x10 63 18 0
20x20 83 38 0
40x40 130 79 0

 Table 1: Results from experiments conducted on different size environments.

The HD column in table 1 stands for hamming distance
between the GVI generated policy and the optimal policy.
The optimal policy (OP) is the policy obtained by running
the VI algorithm with the same initial data and maximum

in4243
57

precision (Pashenkova and Rish, 1996). The use of hamming
to determine the difference between a policy and an optimal
policy is based on that used in Pashenkova and Rish (1996).

From table 1 we can see that as the size of the grid increases
the number of iterations required for convergence also
increases, but it appears that the HD distance of the GVI
algorithm is not affected by the increase in the grid size. This
demonstrates that the GVI algorithm still produces viable
policies, even in larger environments. Similar results were
also found on different variations of maps.

The second phase of experiments looked at learning only
partial sections of maps, around the NPCs location instead of
the whole environment. It can be seen from the first
experiments that as the size of the map increases the number
of iterations required to converge the utility values also
increases. In real time games this may prove processor
intensive, especially if there is more than one NPC with their
own set of rewards and utilities. We experimented with two
different sized partial sections (5x5 and 7x7) around the
NPCs location. Each cell within the partial area was treated
normally, except if the home cell was not in the selection. If
this was the case a new home cell was set.

In order to achieve this, for each accessible state within the
region, the Euclidean metric between it and the goal was
calculated. The state with the smallest value was set as the
temporary home cell. If the Euclidian metric values were
equal then a state was randomly selected. After the NPC
moved one step the region and goal position were re-
calculated and the new utilities generated. The map used for
these experiments (figure 4) was a recreation of a map found
in the Pac-man game.

Region Size Average No. of iterations to Convergence
 VI (OP) GVI
5x5 43.1 6.8
7x7 48.1 9.7

The results from the second phase of experiments were
initially promising. Table 2 shows that the use of regions
speeds up convergence quite considerably. However this
seems to be at the expenses of NPC behaviour. After
analysing the movement of the NPC it generally appeared to
be less direct than when the whole map was taken into
account and environment properties had very little affect on
its behaviour. This decrease in movement quality is
extremely undesirable because one of the objectives of this

research is to produce better quality, more humanlike
behaviour in computer game NPCs. We also found that in
complex maps the technique tends to need more information
than that provided by the region area to solve which state
should be selected as the temporary home state. For example
a U-shape area in an environment may trap an NPC if it
cannot view states outside the area. We overcame this
problem to a certain extent, by only allowing the use of Pac-
man style maps which do not have dead ends and by
recording the NPCs last position in order to prevent it from
moving back on itself.

The third phase of experiments looked at how successful
MDPs were when applied to a real time 2D computer game.
When running the VI algorithm in the Gem Raider game we
experimented with a relatively conservative threshold of
0.001 and 0 (zero). We varied the rewards for each gem
guard in order to achieve different types of behaviour.

The experiments conducted on the Gem Raider game were
focused on confirming that the AI engine would work in a
game environment similar to Pac-man and produce
intelligent behaviour. It is however difficult to determine
whether the Gem Raider game specifically offers an
improvement over the Pac-man game AI for a number of
reasons, in particular as discussed above, because the Gem
Raider game is not an exact clone of Pac-man and the quality
of the Pac-man AI is a subjective issue. From our
observations the NPCs in the Gem Raider game appeared to
produce intelligent behaviour, which reacted to the dynamic,
constantly changing game environments. Some examples of
this behaviour include the gem guards appearing to take into
account and react to environment properties. In our opinions
the behaviour produced by this game appeared to be more
intelligent than the NPC behaviour produced by the Pac-man
game. However further work, such as a survey, would be
necessary to confirm this assertion.

In terms of performance the GVI algorithm performed much
better than the VI algorithm. When running the VI algorithm
there was a noticeable slow down while the utilities were
being calculated. To a certain extent this problem could be
overcome by implementing the technique in a more
optimised programming language such as C++, however it
highlights the problem that this approach is processor
intensive. Figure 4: Screenshot of the map used to produce the results for the region

experiments.
DISCUSION

The results presented in this work show that on different size
grids the GVI algorithm can be used to produce intelligent
NPC behaviour in less iterations that the VI algorithm. After
observing the movement produced by the AI engine we
found that when only partial sections of an environment
were used NPC movement was less effective and took less
account of the environment properties. This is an undesirable
consequence as it results in the NPC appearing less
intelligent.

Table 2: Results from experiments conducted on different region sizes
around the NPCs location.

We have also shown how MDPs using the VI and GVI
algorithm can be applied to 2D real time computer games,
such as Pac-man. Applying this technique to these types of
games has proved relatively successful. The GVI algorithm
offers a more suited stopping criterion for computer games,

in4243
58

as it automatically converges to a usable policy in a very
small number of iterations. The VI algorithm is less suited to
this type of environment because it requires a fixed number
of iterations or a convergence threshold, both of which can
be problematic in dynamic and constantly changing
environments.

When implementing these algorithms in a 2D real time
computer game the key factor to consider is processing
constraints. If each NPC within the game requires individual
rewards and utilities, then the time it takes to generate the
utilities could be inhibitive to the playing of the game. A
solution to this problem would be to determine only a part of
the game environment, however as we have demonstrated
here this impacts greatly on the advantages of the technique.
Other approaches such as fixed regions or a number of NPCs
making use of the same set utilities may solve this problem.
However as long as processing power increases the use of
this technique will become a more interesting proposition for
the development of unscripted NPC navigation in real time
computer games.

CONCLUSIONS AND FUTURE WORK

In our previous work we examined how MDPs using the VI
and GVI algorithms could be applied to an AI engine that
was suitable for use in a 2D real time computer game. This
paper has continued this work and shown that these
algorithms can be relatively successfully applied to 2D style
games. The results from the experiments conducted here are
very promising and show that even though the GVI
algorithm produces a less that optimal utilities it still is
effective, even in large game environments. The results from
the Gem Raider game experiments have shown that it is
indeed feasible to apply MDPs using GVI to real time
computers, such as Pac-man. However the technique is
computationally expensive and as a result may prove
unfeasible for some computer games.

Further work in this area will involve exploring other
algorithms such as policy iteration, modified policy iteration
and reinforcement learning (Sutton and Barto, 2000) in
relation to computer games and comparing them to the GVI
algorithm. Other interesting areas to investigate include
applying the technique to other types of games and applying
the technique to other types of problems, for example state
machines (Sutton and Barto, 2000). The work conducted
here could benefit the application of MDPs to other types of
problems, for example state machines in 3D shoot-em ups
and real time strategy games (Tozour, 2002). However
applying these techniques to NPC navigation in these types
of games may only offer limited use.

ACKNOWLEDGMENTS

The approach used to create map graphics in the Gem Raider
game was inspired by Nick Meuir’s Simple Map Editor.
URL: http://www.Planet-Source-Code.com/vb/scripts/Show
Code.asp?txtCodeId=466 35&lngWId=1.

REFERENCES

Bellman R. (1957) Dynamic Programming, Princeton University Press,

Princeton, New Jersey.
Bonet B. (2002) An e-Optimal Grid-Based Algorithm for Partially

Observable Markov Decision Processes. in Proc. 19th Int. Conf. On
Machine Learning. Sydney, Australia, 2002. Morgan Kaufmann.
Pages 51-58.

Bonet J. and Stauffer C. (2001) Learning to play Pac-man using incremental
Reinforcement Learning. <http://www.ai.mit.edu/people/stauffer/
Projects/PacMan/> (accessed 20 April 2003).

Cass, S. (2002) Mind Games, IEEE Spectrum pp. 40-44, December 2002.
Hartley, T., Mehdi, Q., Gough N. (2004) Using Value Iteration to Solve

Sequential Decision Problems in Games. CGAIDE 2004 5th
International Conference on Computer Games: Artificial Intelligence,
Design and Education (eds. Quasim Medhi and Norman Gough).

Howard R. A. (1960). Dynamic Programming and Markov Processes.
Cambridge, MA: The MIT Press.

Hunter W. (2000) The history of video games from ‘pong’ to ‘pac-man’,
<http://www.designboom.com/eng/education/pong.html> (accessed 18
April 2003).

Kaelbling L. and Littman, M. (1996) Reinforcement learning: a survey.
Journal of Artificial Intelligence Research, vol. 4, pp. 237-285.

Kellis E. (2002). An Evaluation of the Scientific Potential of Evolutionary
Artificial Life God-Games: Considering an Example Model for
Experiments and Justification. MSc. Thesis, University of Sussex.

Kristensen A. (1996), Textbook notes of herd management: Dynamic
programming and Markov decision processes
<http://www.prodstyr.ihh.kvl.dk/pdf/notat49.pdf> (accessed 24 April
2003).

Laird, J., van Lent, M. (2001) Human Level AI's Killer Application.
Interactive Computer Games. Artificial Intelligence Magazine, 22(2),
pp. 15-25.

Lionhead Studios / Electronic Arts (2001) Black & White.
<http://www.eagames.com/>.

Luke, S. and Spector, L. (1996) Evolving Teamwork and Coordination with
Genetic Programming. in 1st Annual Conference on Genetic
Programming (GP-96). The MIT Press, Cambridge MA, pp. 150-156.

Namco (1980), Pac-man. <http://www.namco.co.uk/>.
Nareyek. A. (2004) AI in Computer Games. ACM Queue [Online]. 10 Feb

2004 [cited 20 Feb 2003], ACM Queue vol. 1, no. 10. Available from:
<http://www.acmqueue.org/modules.php?name=Content&pa=showpa
ge&pid=117>.

Pashenkova E. and Rish I. (1996) Value iteration and Policy iteration
algorithms for Markov decision problem.
<http://citeseer.nj.nec.com/cache/papers/cs/12181/ftp:zSzzSzftp.ics.uc
i.eduzSzpubzSzCSP-repositoryzSzpaperszSzmdp_report.pdf/value-
iteration-and-policy.pdf> (accessed 23 April 2003).

Puterman M. and Shin M. (1978) Modified policy iteration algorithms for
discounted Markov decision processes. Management Science,
24:1127-1137.

Russell S. and Norvig P. (1995). Artificial Intelligence A modern Approach,
Prentice-Hall: New York.

Spronck P., Sprinkhuizen-Kuyper I. and Postma E. (2002). Evolving
Improved Opponent Intelligence. GAME-ON 2002 3rd International
Conference on Intelligent Games and Simulation (eds. Quasim Medhi,
Norman Gough and Marc Cavazza), pp. 94-98.

Spronck P., Sprinkhuizen-Kuyper I. and Postma E. (2003). Online
Adaptation of Game Opponent AI in Simulation and in Practice.
GAME-ON 2003 4th International Conference on Intelligent Games
and Simulation (eds. Quasim Medhi, Norman Gough and Stephane
Natkin), pp. 93-100.

Sutton R. and Baro A. (2000) Reinforcement Learning An Introduction.
London: The MIT Press.

Thurau C. Bauckhage C. and Sagerer G. (2003). Combinging Self
Organising Maps and Multilayer Perceptrons to Learn Bot-Behaviour
from a Commercial Game. GAME-ON 2003 4th International
Conference on Intelligent Games and Simulation (eds. Quasim Medhi,
Norman Gough and Stephane Natkin), pp. 119-123.

Tozour P. (2002) The Evolution of Game AI in Steve Rabin (ed) AI Game
Programming Wisdom, Charles River Media, pp. 3-15.

Yousof S. (2002) MDP Presentation CS594 Automated Optimal Decision
Making, <http://www.cs.uic.edu/~piotr/cs594/ Sohail.ppt> (accessed
27 April 2003).

in4243
59

