
 TURNING A CORNER: GAMES AND THE SOCIAL CONTENT

Don Andersona, Stephen E. Arnolda, Dennis Jacobia

Quasim Mehdib, Norman Goughb
aIntellas Group, LLC, 15424 Beckley Hills Drive, Louisville, KY 40245

bUniversity of Wolverhampton, School of Computing and Information Technology,
35/49 Lichfield S Wolverhampton, WV1 1SB United Kingdom

danderson@intellas.com

KEYWORDS
Games, Social Content, Simulation,
Modeling, Artificial Intelligence

ABSTRACT

Electronic games have moved to the
mainstream. With this change has come a
new set of challenges for engineers,
developers, and funding entities. Third-
generation game warfare goes beyond the
reflex-reaction of the first and second-
generation games, particularly with regard
to warfare. The task today is to blend a
data rich environment, near real time
updates, and cognitive change within a
context. Funding agencies, particularly for
government-sponsored projects, require
two different approaches to engineering
design. The first is the need for
architecting so that one or more elements
can be easily repurposed. Repurposing
means that the cost of developing a
function or feature can be spread across
multiple event delivery platforms. The
second is the need for cost reduction and
even cost recovery. The outcome of these
two different engineering boundaries is a
change in the way second-generation
games and third-generation games are
planned, constructed, implemented, and
repurposed. The outlook for games is more
robust than for some other types of
applications but the opportunities come
with greater costs. Changes include the
need for online support, use of game-like

functions outside of a game environment
on analysts’ desktops, and an increased
discipline with regard to code, team
composition, and engineering tactics.

INTRODUCTION

The challenges of modern game
development were encountered in a recent
project in which Intellas Modeling and
Simulation worked with a noted board
game designer, Vance von Borries, to
create a concept for a third-generation
training and battle simulation for the
United States Air Force. Until the present,
war games and simulations have been
primarily attrition based and are centered
on the concept of “force on force,” and
have been designated as “second-
generation” war games. So-called “first
generation” war games were focused on
strategy with the primary concept of
“mind on mind.” This effort views “third
generation” war games and battle
simulations as concentrating on effects
based operations with the primary focus
being “system on system.”

The new system will take into account all
the factors of the previous generations
such as strategy, tactics, and attrition, but
will also include logistics, cascading
effects, doctrine (both military and social),
command and control, and differentiation

mailto:danderson@intellas.com
in4243
301

ENGINEERING ISSUES between allied, enemy and coalition
forces. (Pew et al. 1998) The revised
system will be designed to be flexible and
scalable with the capability of modeling a
variety of scenario types that will include
peacekeeping operations, homeland
security and police actions in addition to
the typical military combat scenarios.
Details of the framework for the project
can be found in Jacobi et al (2003). A
macro view of a possible framework is
illustrated in Figure 1.

The primary engineering issues for a
project of this scope and magnitude can be
categorized in three main areas:
Scalability, modularity, and system
intelligence.

Scalability has generally been absent in
the development of most game and

Database/Datasets DoctrineRule Base

Axis Air &
Ground

“Particles”

Allied Air &
Ground

“Particles”
Fog
of
War

Communication
Agents

Italian Ground
Command

German
Ground

Command

German Air
Command

Italian Air
Command

Communication
Agents

French Ground
Command

British Ground
Command

US Ground
Command

British Air
Command

US Air
Command

Instructor/Admin
GUI

Axis GUI
Allied GUI

Figure 1: Simulation Macro View

in4243
302

simulation software. There is a vast gap
between systems designed to run on
standard personal computers (PCs) and
those designed to run on large scale and
super computers. The middle ground is
barely touched at present. The on-line
gaming paradigm has gone a long way
towards making users aware of the need
for a system that can scale to many users,
but in government applications in
particular, this creates security issues. For
training purposes the scalability problem
can be addressed by creating a distributed
system (Anderson et al. 2002) that can run
in a closed loop network or across secure
lines between installations. Also a
properly designed scalable system should
lend itself to the ability to run on a single
PC, multiple PCs or other suitable
platforms, and also the ability to have
higher level features that can be
implemented and connected to on larger
scale systems, clusters, and/or
supercomputers.

 Modularity, typically in the use of object-
oriented design, has become the standard
in the software industry as a whole.
Developers have in general moved from
the older methods of top down
programming to the use of objects and
modules of code. However the challenge is
to take this concept to the next level
through the creation of distributed systems
in which the objects or modules can reside
on a variety of PCs, platforms and other
devices. Also the use of agents (Weiss
2000; Chen and Wragg 2000, Mehdi 2002)
as well as newer methodologies such as
particle swarm technology are needed to
move to the next level of development and
deployment of these systems to bridge the
gap between games, training tools and
higher level analytical simulations.

This new paradigm also requires new
methods of system intelligence to be
devised. Most games and simulations have
used scripted intelligence, which is only as
good as the scripts that are referenced.
This need is the most difficult challenge in
this arena, to develop systems that are
capable of learning, and beyond that to be
able to mimic the imperfect decision
making of human intelligence to add
reality to the game or simulation.

PROGRAMMING COSTS

The cost of software development has not
benefited from Moore’s Law. For
example, the cost of developing a game
for the Sony PS1 was in the mid-six
figures. The cost for developing a game
for Sony’s PS2 rose to about $3 million
per title. The cost of an original game for
the Sony PS3 is likely to hit $10 million.
The Xbox game cost parallels the costs of
developing for the PlayStation platform.
The likely savings for the Xbox2 will
come from Microsoft’s use of a modified
PowerPC chip, also used by Nintendo, and
development tools that use the DirectX
technology. The benefit for developers is
that costs of developing for the Xbox2
versus the Sony PS3 is that overall
development costs are likely to be
somewhat lower. Sony has invented a new
chip, a new graphics subsystem, and,
therefore, new software development
tools.

The same situation exists in virtually every
sector of the commercial or enterprise
software arena. Costs for license fees are
flat or drifting downwards. The costs for
programming, maintenance, and support
are rising faster than any other cost
associated with modern systems.

in4243
303

faster and easier, programming costs
are comparatively lower than
approaches that don’t use the most
modern tools.

There are notable exceptions, and these
warrant mentioning:

1. An individual not charging his time
to a project with the requisite
technical skills can program a
winner. Whether one points to the
success of Tetris or the handiwork of
Shawn Fanning, it is possible to
make millions at very low cost.

4. Modular structure, the use of ANSI
standard C, and Extensible Markup
Language can shave time from a
programming project, thus reducing
costs.

 2. Open source programming provides
a viable alternative to branded
network operating systems. The open
source revolution is likely to persist;
however, for certain enterprise
applications the fear of rogue code or
security vulnerabilities effectively
keeps certain open source software
out of some organizations.

Nevertheless, overall game development
costs are rising and there is little evidence
that development costs will trend down in
a significant way in the near to mid term.

The market has driven a change in
development methodologies as illustrated
in Figure 2. Efficiency and modularity are
required to reduce development costs and
provide a platform for future efforts. The
organization of the project has become as
important as the product to be developed.
Since time has become increasingly an
important factor, parallel development is
essential to expedite the testing and release
of the product both for the government and
private sector markets. Investors are
looking to see a quick return on their
investments.

 3. Recycling “old code” with today’s
programming tools can reduce the
cost of migrating certain applications
from one platform to another.
Microsoft’s new approach to Xbox
development is that the SDK allows
the programmer to compile for
specific devices, including wireless
platforms. By making repurposing

Old Development Methodology New Development Methodology
1 Unstructured code Structured and modular code
2 Assembler C, C++
3 1 to 3 developers 2 to 4 teams, each with two to four developers
4 Graphics done ad hoc Graphics specialists working in a way similar to

the design team on a motion picture
5 No antecedent Based on antecedents or a motion picture parallel

shoot
6 Serial development Parallelized development; teams may be dispersed
7 No documentation Automatic documentation plus special notations

for proprietary elements
8 No or casual source code control Configuration management
9 Ad hoc compiles and tests Engineering best practices

Figure 2: Comparison of Old and New Development Methodologies

in4243
304

CONCLUSIONS

For government game development
projects, the goal is to create a code base
that can meet the needs of the government
client and cross over to generate
commercial revenue. America’s Army has
become the model for that type of
development. There are, then, some
general guidelines that game developers
will want to keep in mind.

OUTLOOK

What’s ahead for government-funded
game development?

1. Increasing pressure for
commercializing certain games
or components in order to
generate cost recovery

2. Games will be engineered in
the same way that other high
performance government
systems are designed and built

3. Reuse of graphics and code
will expand beyond the “game
application”; for example,
recruiting commercials

4. Online is no longer an option.
Games must run locally and
support Web services.

5. Costs will continue to increase.

REFERENCES

Anderson, D., Belknap, M., Cui, X.,
Elmaghraby, A., Jacobi, D., Kantardzic,
M., Ragade, R. (2002), “A Distributed
Agent Architecture for Human Operations
in Space,” for the International Society for

Computers and their Application 11th
International Conference on Intelligent
Systems on Emerging Technologies,
Boston, 2002.

Chen, J.R., Wolfe, S.R., and Wragg, S.D.,
“A Distributed Multi-Agent, System for
Collaborative Information Management
and Sharing,” Proceedings of the 9th ACM
International Conference on Information
and Knowledge Management, 2000, 383-
388.

Jacobi, D; Anderson, D.; Borries, V;
Elmaghraby, A; Katardzic, M; Ragade, R;
“Building Intelligence in Third Generation
Training and Battle Simulations,” for the
International Society for Optical
Engineering AeroSense Conference, April
21-25, 2003

Mehdi, Q., Gough, N., Sulliam, H.,
“Virtual Agent Using a Combined
Cognitive Map and Knowledge Base
System,” for the International Society for
Computers and their Application 11th
International Conference on Intelligent
Systems on Emerging Technologies,
Boston, 2002.

Pew, Richard and Mavor, Anne, editors,
“Modeling Human and Organizational
Behavior: Application to Military
Simulations,” National Academy Press,
1998.

Weiss, Gerhard, editor, “Multiagent
Systems: A Modern Approach to
Distributed Artificial Intelligence,” The
MIT Press, 2000.

in4243
305

