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Abstract— The measurement of the operators’ workload is an 

important aspect of usage-oriented design of professional 

systems. In domains such as avionics, air traffic management or 

mission systems, being able to quantify the operators’ workload 

under stress, and in potentially demanding physical and mental 

conditions, is mandatory to anticipate overload and prevent 

human errors. Current approaches to workload estimation rely 

mainly on experimentation in simulation as an approach that has 

proven its efficiency for the identification of bad system and/or 

user interface design. Even if one cannot expect to totally avoid 

experimenting, given the complexity of the issue of workload 

computation, a priori estimation of workload might be an 

interesting tool to pre-validate a design in order to save some 

time in the experimentation phase and facilitate the analysis of 

overload situations that appear during experimentation. Various 

approaches to the a priori measurement of workload have been 

proposed: performance-based, physiological and subjective 

measures. Although performance and physiological measures of 

workload may be more precise, subjective measures are more 

practical, easier and less costly to use. For these reasons, they 

have been applied to many complex domains. The experience, the 

skills and the level of training of the operator have been 

identified in the literature as being important human factors. 

Nevertheless, these parameters have not been deeply analyzed in 

the context of workload estimation. In this paper, we develop a 

predictive workload model based on the analysis of the tasks 

assigned to a human operator. We propose to use mental 

representations of tasks, human actors, human roles, knowledge 

and abilities. We then propose to estimate the operator’s 

workload with reference to his experience and training, the load 

over time and the task complexity. Our approach is illustrated on 

an airborne maritime surveillance use-case, in the context of the 

French Medusa project. 

Keywords—workload; model-driven engineering; human-

machine interface; human-computer interaction; mental 

representation; tasks; roles; knowledge; abilities; maritime 

surveillance. 

I.  INTRODUCTION 

Workload measurement has been applied to a number of 

military and industrial problems. There are three major types of 

workload measure: performance-based, physiological and 

subjective. First, performance-based measures can be 

subdivided into primary-task and secondary-task measures. 

Primary-task measures provide a direct indication of 

performance on the task under consideration. However, 

performance on the primary task may be insensitive to 

workload change if operators compensate by increased effort. 

The secondary task is an additional measure to the primary 

task. "The basic idea of a secondary task is that it measures the 

difference between the ‘mental capacity’ consumed by the 

main task, and the total available capacity" (Mulder, 1979) [1]. 

The major problem that may occur when secondary tasks are 

used to measure workload is that they may disrupt primary task 

performance (Colle & Reid, 1999; Sirevaag et al., 1993) [2, 3]. 

For example, a verbal secondary task may not interfere with a 

spatial primary task, even if the primary task is very 

demanding. Physiological measures are based on the 

assumption that workload will induce physical changes. These 

changes are measured in cardiac activity, brain activity, breath 

activity, speech measures, and eye activity. An operator who is 

overloaded may experience changes such as increase in 

heartbeat rate and skin conductance. Often, a large volume of 

data is collected, requiring unfortunately sophisticated analysis. 

Finally, subjective measures are used to reflect the amount of 

information used in working memory (Yeh & Wickens, 1988) 

[4]. A simplistic, but realistic, way to look at workload 

measurement is that "if the person feels loaded and effortful, he 

is loaded and effortful, whatever the behavioral and 

performance measure show" (Johannsen et al., 1979) [5]. Thus, 

subjective measurement is based on the use of scales to 

measure the amount of workload a person is feeling.  

Although physiological measures of workload may be more 

precise, subjective measures are more practical. Furthermore, 

subjective tests are flexible for different people with different 

capabilities. "Because  subjective  ratings  take  into  account  

individual differences in ability, state, and attitude – 

differences that may  be obscured in objective measures of 

performance until breakdown makes them obvious – they are 

valuable because of, not despite, their subjectivity" (Muckler & 

Seven, 1992) [6]. Even though subjective and objective 

measures of workload are very different, it has been shown that 

subjective measures correlate with physiological measures of 

workload such as heartbeat rate variability (Tattersall & Foord, 

1996) [7]. Adding to that, an increasing number of studies have 

found operator ratings to be a more direct indicator of 

workload than physical measures. Subjective measures are 

considered to be the least intrusive, most flexible, most 

convenient, least time consuming, and least expensive form of 

evaluating workload (Yeh & Wickens, 1988) [4]. A variety of 

subjective measures have been developed and applied in many 

studies, particularly those of the flight deck. One of the most 

widely used scales is the NASA Task Load Index (Hart and 



Staveland, 1988) [8]. The NASA-TLX has been implemented 

in many aviation studies since it is considered to be a good 

multidimensional scale. It uses six dimensions to assess 

workload: mental demand, physical demand, temporal demand, 

performance, effort and frustration. The six subscales can be 

divided into three groups. It fact mental, physical and temporal 

demand are characteristics of the task; performance and effort 

are behavioral characteristics and frustration is assumed to be 

individual characteristic.  

In this paper, we present a new method to estimate 

workload that calls back the three important factors 

aforementioned: characteristics of the task, behavioral 

characteristics and individual characteristics. In fact, we argue 

that workload can be inferred from analysis of tasks required of 

human operator. However, individual differences must be 

taken into account. For example, a novice and expert will 

obviously experience different levels of workload when 

performing the same task. For this reason, we explore the 

following important parameters: task complexity, time load, 

experience, knowledge and abilities compared to task 

requirements. Since ‘frustration’ and ‘physical demand’ have 

only shown a small relevance for workload (Pfendler and 

Widdel, 1988; Sepehr, 1988; Veltman and Gaillard, 1993) [9-

12], these subscales of the NASA-TLX have not been included 

in our analysis. The paper is organized as follows. In section II, 

the authors go through the operational analysis of a maritime 

surveillance operation where they particularly focus on the role 

of the tactical coordinator. They also introduce the Medusa 

project and how the human behavior has been integrated in 

high-tech maritime surveillance. Section III starts with an 

insight into the theory of mental representations. Then, the 

authors describe their approach and propose to use mental 

representations of tasks, human actors, human roles, 

knowledge and abilities. The new workload estimation method 

is presented in section IV. A scenario example, a workload 

graph and results of the experiments illustrate the authors’ 

approach. Finally, section V draws some conclusions. 

II. OPERATIONAL ANALYSIS 

In system engineering, the Human View (HV) is required 

to explicitly represent the human and to document the unique 

implications humans bring to the system design. It provides a 

way to integrate human system into the mainstream acquisition 

and system engineering process by promoting early and 

frequent consideration of human roles. The purpose of a HV is 

to capture the human requirements and to inform on how 

humans interact with systems. The NATO Architecture 

Framework (AF) which builds on the United States 

Department of Defense AF (DoDAF) and the United Kingdom 

Ministry of Defence AF (MODAF); is the most extensive and 

complete HV [13, 14]. The Operational Analysis (OA) is the 

entry point to the analysis of human activities and constraints, 

called human integration process. The OA consists in 

identifying operational requirements from the operational 

concepts. Scenarios with representative data are strongly 

recommended to support the identification of the dynamic 

aspects of the human interaction with the system. They are 

mandatory to be able to apply most of the metrics. The human 

activities are identified in the Operational View (OV) and the 

HV is produced as follows. First of all, activities are refined to 

produce a task model. The tasks are enriched with data and 

Knowledge, Skills and Abilities (KSA) requirements. Then, the 

human roles are identified in the OV and the KSA 

requirements for the roles can be inferred from the tasks. In a 

multi-user case, the role structure is also determined. After 

allocating the human roles to human entities, the required KSA 

for these entities are deduced. Next, we describe the 

operational analysis that has been carried out in the context of 

the Medusa project. 

A. Integrating the human behavior in high-tech maritime 
surveillance 

At a time when we are witnessing an explosion in publicly 

available information technology, the development of human-

centred rather than machine-centred applications is becoming 

a priority. The workload of operating surveillance aircraft is 

considerably increased by the range of on-board sensors: 

radar, optical and infrared cameras, radar detectors, ultraviolet 

scanners to detect deliberate pollution, AIS for ship 

identification and new means of communication for getting 

rapidly in touch with decision-makers and relevant public 

authorities. The aim of the Medusa project is to introduce 

behavioural aspects of user-system interaction upstream in the 

design of new systems for dealing with maritime emergencies. 

An iterative methodology will be used to reconcile the need to 

make a system user-friendly, easy-to-learn and efficient with 

its complexity and the multiplicity of interactions involved. 

Intended for use by the French government maritime 

initiative, Action de l’État en Mer, and for managing maritime 

shipping, Medusa will enhance operators’ responsiveness in 

stressful situations and will facilitate decision-making.  

B. Operational analysis: Medusa case study 

We go through the operational analysis of a maritime 

surveillance operation and focus particularly on the role of 

TACtical COordinator (TACCO).  We suppose that a unique 

operator holds this role and thus manages the tactical situation. 

As shown in Fig. 1, the role of TACCO is composed of four 

main tasks: produce Forward Looking Infra-Red (FLIR 

camera) video, produce Radar video, manage track list and 

track classification. The operator can switch over manage track 

list or track classification and iterate them as many times as 

necessary. 

Produce Radar video and FLIR video are both sub-

automatic tasks. The operator has only to switch on/off the 

Radar and the FLIR camera. To manage the track list, the 

operator builds a Track Wide Scan (TWS) zone (zone of 

automatic radar tracking) and updates this list. The operator has 

also to configure the Radar: configuration of the emitter, the 

receiver, the antenna, wavelength, scanning strategies, etc. He 

builds manual tracks or tracks on echoes. When necessary, he 

decides to delete a track and can set a living track as dead 

reckoning. For the latter status, the ship's current position can 

be computed by means of a previously determined position. 

Also, the current position can be fixed and advanced based 

upon known or estimated speeds over elapsed time, and course. 



Once he has created a set of tracks within the defined area of 

surveillance, the operator selects some tracks for classification. 

Both Radar and FLIR classifications can be performed as many 

times as necessary for each selected track. In order to compute 

the boat length, the human actor requests a Dynamic Range 

Profile (DRP) image or an Inverse Synthetic Aperture Radar 

(ISAR) image and proposes a Radar classification.  

 

Fig. 1. Manage the tactical situation diagram. 

III. MENTAL REPRESENTATIONS MODEL 

Although the classic models of knowledge representation 

are not recent, they remain widely used. First, Belief Desire 

Intention (BDI) architectures [15, 16] describe the internal state 

of an agent by the mental attitudes of beliefs, goals and 

intentions. BDI theories provide a conceptual model of the 

knowledge, the goals and the commitments of an agent. 

 In the late nineties, Ross Quillian introduced semantic 

networks as a method of modeling the structure and storage of 

human knowledge in the shape of a graph [17]. Quillian 

wanted his system to explore the meaning of English words by 

the relationships between them. In particular Quillian's system 

sought to compare words and express the results of those 

comparisons. Thus, a semantic network is a structure of 

directed graph, without any circuit, which encodes the 

taxonomic knowledge by objects as well as their properties by 

a double labeling. The nodes represent concepts or words that 

the system "knows" about. Each arc between two nodes 

represents a semantic relation between two concepts such as 

the "is-a" relationship, a modification (adjective or adverb), a 

conjunction (and), a disjunction (or), similarity, consequence, 

etc. In this way, the representation of the knowledge (of 

common sense) is simpler and more natural than with the 

predicate logic. Adding to that, the ease of search for 

information necessary for certain reasoning and inferences, 

explains also the popularity of semantic networks. 

Nevertheless, their semantics remains vague: quantization 

problems; the transcription of a sentence in semantic network 

is a delicate problem, since there is no unique (universal) 

solution. Another defect in this model is that it is not planned 

to represent correctly formal semantics such as the inference. 

Even though relations of inference are used for the inheritance, 

semantic networks do not admit a correct transitivity.  

However, there are two derived models with less vague and 

more formal semantics. They are the conceptual graphs (Sowa, 

1976) [18] and the description logic [19]. Finally, neural 

networks started in 1943 by the presentation of McCulloch and 

Pitts [20] about the formal neuron which is an abstraction of 

the physiological neuron. Neural networks yet require too 

much processing to be functional. 

As exposed above, the formalization of knowledge can 

rapidly become very complex. In our analysis, we propose to 

use mental representations. 

A. Mental representations: structure and operations 

The Theory of Mental Representation (TMR) (Reboul & 

Moeschler 1998) [21] aims  to complete  the Relevance Theory 

(Sperber & Wilson 1986) [22] on  the  specific  issue  of  

enrichment  of  logical form  where  reference  assignment  is  

concerned.  It postulates that reference assignment is never 

entirely done at the linguistic level and makes the strong 

hypothesis that reference assignment goes through Mental 

Representations (MRs). MRs are structured representations 

which gather heterogeneous information, visual, spatial, 

linguistic and encyclopedic. Their composition includes: an 

address which is a means of access, a logical entry containing 

the logical relations between the concept and other concepts, an 

encyclopedic entry containing  both  information inherited  by  

default  from  the generic concept  to  which  the  object  

concerned  belongs  and  information  specific  to  the object, a 

visual entry including information relative to the present and 

past appearance of the object, a spatial entry for the intrinsic 

orientation of the object, its spatial relations to other objects in 

the same space  and  its  movements, a lexical entry 

representing the counterparts of the concept in natural 

languages; i.e., linguistic expressions used to refer to the object 

and their possible morphological derivations. The  visual  and  

spatial  entries  are  addition  to  the  composition  of concepts 

given in Relevance Theory; since operations  on  MRs  can  be  

triggered  by  perception  as  well  as  by discourse. The 

operations on MRs are the following: creation, modification, 

fusion, duplication, grouping and extraction. 

There are different types of MRs organized hierarchically 

according to Fig. 2. Any MR inherits from one of the two basic 

MRs-parents: object and eventuality. The starting point of 

Eventuality MRs is the ontology of eventualities proposed by 

Vendler (1957) [23] who distinguished between two major 

types of eventualities: states and events. In fact, there are two 

main reasons to represent events in TMR. First, events can be 

designated by referring expressions (the classification of the 

track, the configuration of the Radar, etc.) and, given that a 

basic principle in TMR is that  referring expressions are 

resolved on MRs, events must have MRs corresponding to 

them. Furthermore, objects can be designated through present 

or past states (the deleted track/the track that was classified) 

and these states are the consequence of various events. Finally, 

events are subdivided into three categories: accomplishments, 

achievements and activities. According to Vendler, activities 

and accomplishments are distinguished from achievements in 

that the former allow the use of continuous and progressive 

aspects. Activities and accomplishments are distinguished from 

each other by boundedness: activities do not have a terminal 

point (a point before which the activity cannot be said to have 



taken place, and after which the activity cannot continue – for 

example "The TACCO drew a TWS zone") whereas 

accomplishments do. Of achievements and accomplishments, 

achievements are instantaneous and take place immediately 

(such as in "recognize" or "find") whereas accomplishments 

approach an endpoint incrementally (as in "classify a track" or 

"adjust the FLIR parameters"). 

 

Fig. 2. Hierarchy of mental representations and ontology of eventualities. 

B. Mental representation model for the role of TACCO 

For the Medusa project, we are particularly interested in 

four types of MRs: objects (concrete or abstract), eventualities, 

states and activities. The subsections below represent our 

mental model of human entities, human roles, tasks, knowledge 

and abilities for a maritime surveillance operation, the target 

application in Medusa. We illustrate our models with examples 

using graphical representations of MRs.  

1) Mental representation of human actors and roles 
 In a maritime surveillance operation, roles are generally 

distinct from human actors. On the one hand, an operator can 

perform several roles. On the other side, a given role can be 

distributed across several operators. For example, let us 

suppose that the surveillance maritime (SurMar) crew is 

composed of five operators in total representing the cockpit 

crew and the cabin crew. Piloting the aircraft is the unique role 

assigned to the pilot; whereas piloting is part of the co-pilot’s 

responsibilities who commands also the aircraft. The role of 

observing is shared between two different operators. Finally, 

mission command and sensor management are allocated to the 

radarist operator who elaborates the tactical situation. 

We propose to model a human entity using a concrete, 

animate and human object concept. Fig. 3 shows the 

corresponding MR-Object internal structure. In the conceptual 

entry, operator[1] refers to the category and the cardinal. The 

notation field contains four properties. In fact, we characterize 

an operator by his first name, his last name, the knowledge he 

has acquired and the abilities he has developed. 

Furthermore, we model the role of TACCO using an 

abstract object concept. As for the operator, the properties can 

be found in the notation. In fact, some knowledge and abilities 

are required to perform the role of TACCO. Furthermore, a 

role has a complexity computed in terms of number of MRs, as 

well as a temporal structure. The temporal structure is a 

complex propositional content corresponding to the application 

of a loop (iteration) or binary operators (such as conjunction, 

disjunction and conditional clause) to one or several 

propositions. Thus, the temporal structure is like a detailed 

graph grouping all the possible executions of the allocated 

tasks.  

 

Fig. 3. Object mental representations: internal structure of an operator. 

Since the role is the execution of many tasks over time, we 

have defined a partition of four possible tasks, already 

presented in section II (see Fig. 1). This partition is available in 

the logical entry of the MR object.  The next paragraph deals 

with task model. 

2) Mental representation of tasks 
 We propose to model tasks using events MRs. Thus, a task 

can be an accomplishment, an activity or an achievement. We 

also decompose each task into subtasks. For instance, the task 

"perform FLIR classification" consists of three subtasks: get 
ship FLIR image, decorate FLIR image and propose FLIR 
classification. As usual, we refer to the category and the 

cardinal in the conceptual entry. In the notation, we implement 

the same properties already defined for the role of TACCO: 

required knowledge, required abilities, temporal structure and 

complexity. Adding to that, an event has a temporal location 

and a begin time that can be found in the field Time of the 

conceptual entry.  

We apply the mental model to manage track list. The task 

is divided into eight subtasks: create a TWS zone, configure 

the Radar, build/ delete a track, automatic/manual tracking, set 

living track as dead reckoning and end track list update. This 

partition is represented in the logical entry of the parent MR, 

where the parts can be differentiated according to their generic 

concept and the begin time of the corresponding event. The 

temporal structure of this task can be described as follows: {P1 

& {LP ({P2 ||| {P3 V P4 V P5 V P6 V P7 V P8 V P9}})}}; where: 

P1 = @create_zone<25>, P2 = @exploit_Radar_video<62>,  

P3 = @radar_menu<33>,  P4 = @build_track<20>,  

P5 = @delete_track<28>,  P6 = @automatic_tracking<40>,  

P7 = @manual_tracking<41>, P8 = @dead_reckoning<63>,  

P9= @end_track_list_update<64>,  

LP represents an iterative process, V is a disjunction, & is a 

conjunction and ||| shows that subtask "exploit Radar video" 

is simultaneously executed with all the remaining subtasks 

(parallelism). 

During a maritime surveillance operation, we suppose that 

the TACCO operator first created a TWS zone. Then, he 

configured the Radar and created two tracks. He performed 

automatic tracking for the former and manual tracking for the 



latter. Finally, he ended his tracks list update. The temporal 

structure is a complex proposition representing the conjunction 

of seven propositions as follows: create_zone<256> & 

{@exploit_Radar_video<261> ||| {radar_menu<257> & 

build_track<258> & build_track<259> & 

automatic_tracking<260> & manual_tracking<261> & 

end_track_list_update<260>}}.  

As far as task "perform FLIR classification", the temporal 

structure is the conjunction of three propositions corresponding 

to the aforesaid subtasks: {@get_boat_FLIR_image<84> & 

@decorate_FLIR_image<85> & 

@propose_FLIR_classification<86>}. 

Fig. 4 is another application of the task model in the case of 

camera_on, one of produce_flir_video subtasks. In order to 

switch on the FLIR camera, a human actor acts on the camera 

concept, and this object participant is defined in the conceptual 

entry of camera_on (argD). The required knowledge and 

abilities are also compulsory to evaluate the complexity of a 

task. Below, we address these issues in details and we 

introduce the mental model we have adopted for knowledge 

and abilities. 

 

Fig. 4. Event mental representation: internal structures of the subtask 

camera_on. 

3) Mental representation of knowledge and abilities 
As exposed at the beginning of section III, the 

formalization of knowledge and abilities can rapidly become 

very complex. However, we need a simple formalism that 

enables matching between roles and human actors. Knowledge 

designates the familiarity with information, facts and 

descriptions. Abilities designate aptitude and intelligence. They 

are competences to perform an activity. We do not include 

skills in the model since we consider them as reflex behaviors. 

For these reasons, we consider knowledge and abilities as 

mental states and we model them by state MRs, as shown in 

Fig. 5.  

The knowledge model has two participants and one 

property: agent, know and level, respectively. The agent 
participant refers to the operator executing the current task. For 

example, an operator must acquire radar_systems knowledge 

to be able to configure the Radar. The required level for this 

knowledge is C (proficient) since this configuration includes 

the emitter, the receiver, the antenna, the wavelength, the 

scanning strategies, etc.  

We propose a similar structure to model abilities: two 

participants (agent and know how to) and one property 

(required expertise level). The expertise level property takes 

the values of novice, advanced beginner, competent, proficient 

or expert, inspired from the 'novice to expert' Dreyfus model 

[24]. For example, an operator can perform a Radar 

classification if he has developed the corresponding ability 

with the highest expertise level (i.e., expert). 

 

Fig. 5. State mental representation: generic internal structure of knowledge 

and abilities. 

To make sure a given role goes smoothly, it is necessary to 

check that the human actor has acquired some concepts and 

can put his abilities to the best use. The role allocated to the 

operator will hopefully go off to a good end. Thus, roles and 

entities matching is a two-folded matching: 

• Matching the required knowledge and the operator 

acquired knowledge; 

• Matching the minimum required and the operator 

acquired expertise level for all the abilities. 

In fact, to carry out the role of TACCO, it is necessary to 

have acquired the following knowledge: identification systems 

(AIS, IFF), radar systems (radar, ISAR, TWS, DRP, SAR and 

ISAR library), FLIR systems (FLIR, FLIR library), maritime 

knowledge (maritime environment), meteorology, 

communications knowledge (navigation systems, GPS), etc. 

The level of knowledge differs from one task to the other. For 

example, a B level (intermediate) maritime knowledge is 

enough to manage_track_list. However, performing track 

classification requires a C level (proficient) maritime 

knowledge.  Several workshops and interviews were held with 

TACCO operators in order to accurately estimate subjective 

factors such as the level of experience and the required 

expertise level. 

We have developed a graphical interface to instantiate an 

operator and match his knowledge and abilities with those 

required to carry out the role of TACCO.  In the sequel, we 

suppose that the matching goes off smoothly and we attribute 

the role of TACCO to a convenient operator. It is possible to 

observe him in situation, estimate the mission completion time, 

estimate and analyze his workload. Applied metrics allow to 

verify the capacity of the human actor to perform the tasks he 

has been allocated.  Section IV focuses on workload issues.  

IV. TOWARDS AN ESTIMATION OF THE WORKLOAD 

We propose to estimate the workload W of a maritime 

surveillance operator, in terms of number of MRs, by means of 

the formula ( ) )(1
1 1

MRsCW
t in

i

TL

j
jj∑ ∑ ×−=

= =

ρ ,  where: 



• tn  is the number of tasks considered within a given role; 

• Factor jρ  is linked to the operator's experience. In fact, the 

more experienced the operator is, the less complex the task 

is and the less load over time it requires; 

• Task complexity jC  depends on both the level of required 

knowledge for the task (A, B or C) and the required 

expertise levels of the different abilities (novice, advanced 

beginner, competent, proficient, expert). The task 

complexity remains unchanged if the expertise level is 

''novice'' or ''advanced beginner''. However, it is doubled 

for a ''competent'' required level, tripled for ''proficient'' 

and quadrupled for ''expert''. According to the knowledge 

level, the complexity is doubled for A-level (basic), tripled 

for B-level (intermediate) and multiplied by four for C-

level (proficient). 

• Factor iTL  represents the load over time; and is computed 

according to the temporal structure of the task.  

It is important to differentiate TL from C. Although 

subtasks ''build fifty tracks during two hours'' and ''build fifty 

tracks in five minutes'' have the same complexity, they have 

different loads over time. 

 Let us consider produce_Radar_video task for example. 

The corresponding event MR contains a partition of four 

subtasks in the logical entry: radar_on, provide_drp, 
provide_isar and radar_off.  A differentiation criterion, based 

on the category and the begin time of the subtask, is used to 

isolate each part from the others. The temporal structure is the 

conjunction of four propositions corresponding to the aforesaid 

subtasks; and it is expressed as follows: {@radar_on<58> & 

@provide_drp<60>&@provide_isar<61>& @radar_off<59>}. 

Thus, the time load TL of produce_Radar_video task is 

computed by means of the complex proposition above: 4=TL . 

As far as task complexity is concerned, we analyze the required 

knowledge and abilities. For radar_on and radar_off subtasks, 

the operator should know the concept of radar. As only A-

level (basic level) knowledge of this concept is required, the 

complexity is then doubled. The corresponding object MR 

(argD participant) has a property on/off which is also updated. 

Furthermore, an advanced beginner is the minimum threshold 

identified as required expertise level to switch on/off the Radar. 

With this property value, the complexity of the subtask remains 

unchanged. Then for radar_on and radar_off the complexity 

is: 51121 =+++=C  MRs, corresponding to the MRs of the 

event itself, A-level, advanced beginner and argD participant 

values. Similar reasoning is applied for subtasks provide_isar 
and provide_drp. The operator should have acquired A-level 

knowledge of the concepts isar and drp respectively. The argD 

participants are also updated and there is not any ability for 

these automatic subtasks. In this case, 4121 =++=C  MRs, 

which corresponds to the MRs of the event itself, A-level and 

argD participant values. As produce_Radar_video is a sub-

automatic task, it does not need an expert to be accomplished. 

For this reason, we consider factor 0=ρ , since the experience 

and training of the operator slightly influence the workload in 

the example. Finally, the estimated workload for 

produce_Radar_video is )(184252 MRsW =×+×= . 

Let us assume that we have observed a maritime 

surveillance operator on Dassault’s Falcon 50 aircraft. Fig. 6 

represents the graphical interface used to simulate the 

execution for the role of TACCO. Below is a selection among 

the tasks he has accomplished during the mission. First of all, 

the operator switched on the FLIR and the Radar. Then, he 

configured the Radar. He exploited the displayed video and 

drew a TWS zone. Then, he built five tracks. He decided to 

delete one of them. After that, he classified one track based on 

a FLIR classification. A Radar and FLIR classifications were 

necessary to classify the second track. The operator classified 

the third track after two Radar image-based classifications 

(ISAR and DRP). Finally, he updated the tracks list by setting a 

living track as dead reckoning. 

 

Fig. 6. Role execution via the graphical interface: a scenario example. 

 

Fig. 7. Workload graph: execution via the graphical interface. 

The workload graph provided by Fig. 7 shows some peaks. 

In fact, even for a well trained and experienced operator, track 

classification remains the most demanding task. There are 

mainly five peaks: two of them correspond to FLIR 

classifications (141 MRs and 124 MRs). The three others of 66 

MRs belong to Radar classification subtasks. These were the 

most complex tasks throughout the previous scenario. At the 

beginning, the operator configured the Radar. The workload 

necessary to carry out this task is about 17 MRs. Note that, 

even though building tracks does not represent a complex task, 

its repetition entails a significant time load. 

 A series of experiments were conducted at Thales (Brest, 

France) with a maritime surveillance crew in December 2013 



and February 2014. The radar operator was equipped with 

several sensors -such as a contactless eye tracker, an 

electrocardiogram (ECG)-enabled armband, a wireless heart 

rate monitor, etc – to measure the psycho-physiological 

signals. Fig. 8 shows a twenty-minute portion of the raw ECG 

recorded during the experiments. We have associated the 

corresponding tasks executed by the radar operator. We notice 

that the high peaks correspond to demanding tasks such as 

tracks classification or tactical situation enhancement. 

Whereas, a consequent reduction of the workload corresponds 

to simple tasks such as displaying the cartography, zooming 

in/out, creating or deleting tracks, etc. Therefore, the ECG is 

coherent with the workload graph generated by the model, as it 

was similarly observed in [25]. 

 

Fig. 8. A sample of the recorded ECG of the radar operator. 

V. CONCLUSION 

In this paper, we have proposed a new method to measure 

the workload based on three important parameters: the 

experience and training of the human actor, the complexity of 

the task and the time load. Our model is inferred from tasks 

analysis. We have proposed mental representations of human 

entities, human roles, tasks, knowledge and abilities. The 

required knowledge and abilities for each task affect the 

corresponding complexity. In fact, the higher the required 

expertise level is, the more complex the task is. We have 

investigated the mental representations as well as workload 

issues to model a maritime surveillance operation, particularly 

for the role of TACCO. Finally, experiments with maritime 

surveillance operators were carried out to give concrete 

expression to the predictive workload estimation and validate 

the proposed analysis.  

The approach proposed is generic and is currently being 

applied to another use-case (airborne SIGnal INTelligence - 

SIGINT) for further validation. In addition, the model is being 

refined based on some interviews we conducted with TACCO 

operators. The main perspective consists in adding the 

influence of the physical environment and the physiological 

constraints.  
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