The relative contributions of anaerobic and aerobic energy supply during track 100-, 400- and 800-m performance.

2.50
Hdl Handle:
http://hdl.handle.net/2436/29879
Title:
The relative contributions of anaerobic and aerobic energy supply during track 100-, 400- and 800-m performance.
Authors:
Nevill, Alan M.; Ramsbottom, Roger; Nevill, Mary E.; Newport, S.; Williams, C.
Abstract:
AIM: The present study set out to identify the relative contribution of the laboratory determined physiological measures, (maximal) accumulated oxygen deficit (AOD) and maximal oxygen uptake (VO(2max)), when predicting track performance. METHODS: Fourteen volunteers (men: n=10; women: n=4); mean (+/- standard deviation [SD]) height 1.76+/-0.1 (men) vs 1.62+/-0.08 m (women); body mass: 67.9+/-7.1 (men) vs 50.6+/-8.2 kg (women), ran track races at distances of 100, 400 and 800 m. The individually determined (maximal) AOD and VO(2max) were measured under controlled laboratory conditions (68.3+/-10.2 vs 60.7+/-16.1; men vs women, mL.(2).Eq.kg(-1)) and (68.7+/-7.3 vs 55.6+/-4.3; men vs women, mL.kg(-1).min(-1)), respectively. RESULTS: Track performance could be predicted using both laboratory measures, AOD and , with a high degree of accuracy: R2=76.9%, 84.8% and 89.1% for 100, 400 and 800 m, respectively. Data analysis confirmed the dominant energy supply during 100-m sprinting was the anaerobic energy supply processes, reflected as AOD. In contrast, oxidative metabolism (reflected as VO(2max)) was the dominant source of energy supply during 800-m performance. CONCLUSION: The results support earlier research, rather than present textbook dogma, namely that aerobic and anaerobic processes contribute equally to maximal exercise lasting approximately 60 s.
Citation:
The Journal of Sports Medicine and Physical Fitness, 48(2): 138-142
Publisher:
Edizione Minerva Medica
Issue Date:
2008
URI:
http://hdl.handle.net/2436/29879
PubMed ID:
18427406
Additional Links:
http://www.minervamedica.it/index2.t
Type:
Article
Language:
en
ISSN:
0022-4707
Appears in Collections:
Sport Performance; Sport, Exercise and Health Research Group; Learning and Teaching in Sport, Exercise and Performance

Full metadata record

DC FieldValue Language
dc.contributor.authorNevill, Alan M.-
dc.contributor.authorRamsbottom, Roger-
dc.contributor.authorNevill, Mary E.-
dc.contributor.authorNewport, S.-
dc.contributor.authorWilliams, C.-
dc.date.accessioned2008-06-11T10:55:49Z-
dc.date.available2008-06-11T10:55:49Z-
dc.date.issued2008-
dc.identifier.citationThe Journal of Sports Medicine and Physical Fitness, 48(2): 138-142en
dc.identifier.issn0022-4707-
dc.identifier.pmid18427406-
dc.identifier.urihttp://hdl.handle.net/2436/29879-
dc.description.abstractAIM: The present study set out to identify the relative contribution of the laboratory determined physiological measures, (maximal) accumulated oxygen deficit (AOD) and maximal oxygen uptake (VO(2max)), when predicting track performance. METHODS: Fourteen volunteers (men: n=10; women: n=4); mean (+/- standard deviation [SD]) height 1.76+/-0.1 (men) vs 1.62+/-0.08 m (women); body mass: 67.9+/-7.1 (men) vs 50.6+/-8.2 kg (women), ran track races at distances of 100, 400 and 800 m. The individually determined (maximal) AOD and VO(2max) were measured under controlled laboratory conditions (68.3+/-10.2 vs 60.7+/-16.1; men vs women, mL.(2).Eq.kg(-1)) and (68.7+/-7.3 vs 55.6+/-4.3; men vs women, mL.kg(-1).min(-1)), respectively. RESULTS: Track performance could be predicted using both laboratory measures, AOD and , with a high degree of accuracy: R2=76.9%, 84.8% and 89.1% for 100, 400 and 800 m, respectively. Data analysis confirmed the dominant energy supply during 100-m sprinting was the anaerobic energy supply processes, reflected as AOD. In contrast, oxidative metabolism (reflected as VO(2max)) was the dominant source of energy supply during 800-m performance. CONCLUSION: The results support earlier research, rather than present textbook dogma, namely that aerobic and anaerobic processes contribute equally to maximal exercise lasting approximately 60 s.en
dc.language.isoenen
dc.publisherEdizione Minerva Medicaen
dc.relation.urlhttp://www.minervamedica.it/index2.ten
dc.subjectAnaerobic Thresholden
dc.subjectOxygen Consumptionen
dc.subjectExerciseen
dc.titleThe relative contributions of anaerobic and aerobic energy supply during track 100-, 400- and 800-m performance.en
dc.typeArticleen

Related articles on PubMed

All Items in WIRE are protected by copyright, with all rights reserved, unless otherwise indicated.