Changes to Associative Learning Processes in Later Life

2.50
Hdl Handle:
http://hdl.handle.net/2436/14302
Title:
Changes to Associative Learning Processes in Later Life
Authors:
Walford, Edward
Abstract:
The present research sought to describe and explain age related changes to associative learning processes. Eleven experiments were conducted using a human conditional learning paradigm. Background data on health, lifestyle, and cognitive ability were collected and used as predictor variables in multiple regression analyses. Experiments 1 to 8 were formative, and found that older participants showed an overall age related decline in learning ability exacerbated by the number of stimuli and outcomes used, and the concurrent presentation of different problem types. Configural models of learning (e.g. Pearce, 1994, 2002) best predicted young participants’ learning whereas older people’s learning was more consistent with elemental models (e.g. Rescorla-Wagner, 1972), suggesting an age related change in generalisation processes. Those who learned problems better were also more likely to be able to articulate a rule that had helped them learn the problem. Age itself was the most predominant predictor of accuracy in these experiments. Experiments 9, 10, and 11 were multiple stage experiments that looked at the extent of pro- and retro-active interference in learning. Experiments 9 and 10 used easy and hard HCL problems to examine the role of rule induction in learning. Older participants who had learned initial discriminations better were more prone to pro-active interference in both experiments, the extent of which was predicted most reliably by fluid intelligence. Rule learning had a profound effect on participants’ predictions during the unreinforced test stage. In Experiment 9 (Easy-Hard) younger participants suffered from more retroactive interference than older people. This pattern was far less pronounced in Experiment 10, (Hard-Easy) suggesting that problem order affected the way participants generalised from rule-based knowledge. This observation is inexplicable by associative learning theories, and explanation may require a problem solving approach. Experiment 11 examined feature-based generalisation. Again older participants suffered more proactive and retroactive interference and elemental theories predicted their responses best, whereas younger participants responses were consistent with configural models of learning. In this instance, resistance to pro- and retro-active interference was predicted by fluid intelligence. Overall the research concluded that there is a demonstrable, complexity dependent change in associative learning processes in later life. It appears that humans have an increasing tendency to rely on elemental, rather than configural processes of generalisation in later life, and this leads to overgeneralisation between stimuli and an inability to resist pro- and retroactive interference in learning. This may be as a result of an inhibitory or source monitoring failure as a consequence of atrophy in the frontal lobes of the brain, although some of the learning deficits are explicable through mnemonic decline.
Publisher:
University of Wolverhampton
Issue Date:
2007
URI:
http://hdl.handle.net/2436/14302
Type:
Thesis
Language:
en
Description:
A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy
Appears in Collections:
E-Theses

Full metadata record

DC FieldValue Language
dc.contributor.authorWalford, Edward-
dc.date.accessioned2007-10-25T14:35:13Z-
dc.date.available2007-10-25T14:35:13Z-
dc.date.issued2007-
dc.identifier.urihttp://hdl.handle.net/2436/14302-
dc.descriptionA thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophyen
dc.description.abstractThe present research sought to describe and explain age related changes to associative learning processes. Eleven experiments were conducted using a human conditional learning paradigm. Background data on health, lifestyle, and cognitive ability were collected and used as predictor variables in multiple regression analyses. Experiments 1 to 8 were formative, and found that older participants showed an overall age related decline in learning ability exacerbated by the number of stimuli and outcomes used, and the concurrent presentation of different problem types. Configural models of learning (e.g. Pearce, 1994, 2002) best predicted young participants’ learning whereas older people’s learning was more consistent with elemental models (e.g. Rescorla-Wagner, 1972), suggesting an age related change in generalisation processes. Those who learned problems better were also more likely to be able to articulate a rule that had helped them learn the problem. Age itself was the most predominant predictor of accuracy in these experiments. Experiments 9, 10, and 11 were multiple stage experiments that looked at the extent of pro- and retro-active interference in learning. Experiments 9 and 10 used easy and hard HCL problems to examine the role of rule induction in learning. Older participants who had learned initial discriminations better were more prone to pro-active interference in both experiments, the extent of which was predicted most reliably by fluid intelligence. Rule learning had a profound effect on participants’ predictions during the unreinforced test stage. In Experiment 9 (Easy-Hard) younger participants suffered from more retroactive interference than older people. This pattern was far less pronounced in Experiment 10, (Hard-Easy) suggesting that problem order affected the way participants generalised from rule-based knowledge. This observation is inexplicable by associative learning theories, and explanation may require a problem solving approach. Experiment 11 examined feature-based generalisation. Again older participants suffered more proactive and retroactive interference and elemental theories predicted their responses best, whereas younger participants responses were consistent with configural models of learning. In this instance, resistance to pro- and retro-active interference was predicted by fluid intelligence. Overall the research concluded that there is a demonstrable, complexity dependent change in associative learning processes in later life. It appears that humans have an increasing tendency to rely on elemental, rather than configural processes of generalisation in later life, and this leads to overgeneralisation between stimuli and an inability to resist pro- and retroactive interference in learning. This may be as a result of an inhibitory or source monitoring failure as a consequence of atrophy in the frontal lobes of the brain, although some of the learning deficits are explicable through mnemonic decline.en
dc.format.extent2856873 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoenen
dc.publisherUniversity of Wolverhamptonen
dc.subjectAssociative learningen
dc.subjectCognitive agingen
dc.subjectAge related changeen
dc.subjectHuman conditional learningen
dc.titleChanges to Associative Learning Processes in Later Lifeen
dc.typeThesisen
dc.type.qualificationlevelDoctoral-
All Items in WIRE are protected by copyright, with all rights reserved, unless otherwise indicated.