• Chimeric peptides as tumour-selective delivery systems.

      Jones, Sarah; Howl, John D. (Society for Neuro-oncology and Duke University Press, 2005)
      The cell-type-specific targeting of cytotoxic agents and other functional moieties can be achieved by using peptidyl address motifs that selectively bind protein targets expressed at high density at the cell membrane. Indeed, numerous studies have confirmed the utility of ligands for G protein–coupled receptors as components of heterofunctional peptide chimeras that are selective biological probes. Our current efforts are directed toward the further development of chimeric peptidyl constructs that employ sequences derived from GPCR ligands or cell penetrant motifs to affect the selective delivery of cytotoxins and signal transduction modulators to tumor cells. We have designed and synthesized a range of hybrid constructs consisting of cytotoxins (peptide and non-peptide) covalently linked to an address peptide derived from the C-terminal of gastrin (G7; H-AYGWMDF-NH2). The G7 homing motif targets a novel binding site expressed by U373MG astrocytic tumor cells that is distinct from classical CCK1/CCK2 receptors. Moreover, biological responses following activation of this novel membrane-bound protein may offer additional therapeutic advantages. For example, G7 receptor activation is reported to inhibit the motility of malignant astrocytoma in vivo while avoiding the growth-promoting effects of gastrin (Pannequin et al., J. Pharmacol. Exp. Ther. 302, 274, 2002). We evaluated the cytotoxicity of our chimeric peptides by comparing changes in cellular viability using MTT conversion assays. Our data indicate that chimeric peptides dose-dependently and rapidly (<8 h) reduced the viability of U373MG cells. Moreover, as a chimeric amino-terminal extension, the G7 address motif enhanced the cytotoxicity of both mastoparan (H-INLKALAALAKKIL-NH2) and D(KLAKLAK)2 peptides reported to stimulate necrosis and/or apoptosis of eukarytoic cells. In conclusion, hybrid G7 chimeras enhance the efficacy of cytotoxic agents and may be valuable probes to investigate and manipulate additional aspects of astrocytoma cell biology. This work was supported by The Wellcome Trust.
    • A morphogenetic EphB/EphrinB code controls hepatopancreatic duct formation

      Thestrup, MI; Caviglia, S; Cayuso, J; Heyne, RLS; Ahmad, R; Hofmeister, W; Satriano, L; Wilkinson, DG; Andersen, JB; Ober, EA; et al. (Springer Science and Business Media LLC, 2019-11-19)
      The hepatopancreatic ductal (HPD) system connects the intrahepatic and intrapancreatic ducts to the intestine and ensures the afferent transport of the bile and pancreatic enzymes. Yet the molecular and cellular mechanisms controlling their differentiation and morphogenesis into a functional ductal system are poorly understood. Here, we characterize HPD system morphogenesis by high-resolution microscopy in zebrafish. The HPD system differentiates from a rod of unpolarized cells into mature ducts by de novo lumen formation in a dynamic multi-step process. The remodeling step from multiple nascent lumina into a single lumen requires active cell intercalation and myosin contractility. We identify key functions for EphB/EphrinB signaling in this dynamic remodeling step. Two EphrinB ligands, EphrinB1 and EphrinB2a, and two EphB receptors, EphB3b and EphB4a, control HPD morphogenesis by remodeling individual ductal compartments, and thereby coordinate the morphogenesis of this multi-compartment ductal system.
    • Peptide Synthesis and Applications

      Howl, John D. (Clifton, N.J.: Humana Press, 2005)
      Hands-on experts describe in step-by-step detail the key methodologies of contemporary peptide synthesis and illustrate their numerous applications. The techniques presented include protocols for chemical ligation, the synthesis of cyclic and phosphotyrosine-containing peptides, lipoamino acid- and sugar-conjugated peptides, and peptide purification and analyses. Additional chapters detail methodologies and instrumentation for high-throughput peptide synthesis, many different applications of peptides as novel research tools and biological probes, and the design and application of fluorescent substrate-based peptides that can be used to determine the selectivity and activity of peptidases. A practical guide to the identification of proteins using mass spectrometric analyses of peptide mixtures is also included. (Humana Press)