• Liver fat, visceral adiposity, and sleep disturbances contribute to the development of insulin resistance and glucose intolerance in nondiabetic dialysis patients.

      Sakkas, Giorgos K; Karatzaferi, Christina; Zintzaras, Elias; Giannaki, Christoforos D; Liakopoulos, Vassilios; Lavdas, Eleftherios; Damani, Eleni; Liakos, Nikos; Fezoulidis, Ioannis; Koutedakis, Yiannis; et al. (American Physiological Society, 2008-12)
      Hemodialysis patients exhibit insulin resistance (IR) in target organs such as liver, muscles, and adipose tissue. The aim of this study was to identify contributors to IR and to develop a model for predicting glucose intolerance in nondiabetic hemodialysis patients. After a 2-h, 75-g oral glucose tolerance test (OGTT), 34 hemodialysis patients were divided into groups with normal (NGT) and impaired glucose tolerance (IGT). Indices of insulin sensitivity were derived from OGTT data. Measurements included liver and muscle fat infiltration and central adiposity by computed tomography scans, body composition by dual energy X-ray absorptiometer, sleep quality by full polysomnography, and functional capacity and quality of life (QoL) by a battery of exercise tests and questionnaires. Cut-off points, as well as sensitivity and specificity calculations were based on IR (insulin sensitivity index by Matsuda) using a receiver operator characteristics (ROC) curve analysis. Fifteen patients were assigned to the IGT, and 19 subjects to the NGT group. Intrahepatic fat content and visceral adiposity were significantly higher in the IGT group. IR indices strongly correlated with sleep disturbances, visceral adiposity, functional capacity, and QoL. Visceral adiposity, O2 desaturation during sleep, intrahepatic fat content, and QoL score fitted into the model for predicting glucose intolerance. A ROC curve analysis identified an intrahepatic fat content of > 3.97% (sensitivity, 100; specificity, 35.7) as the best cutoff point for predicting IR. Visceral and intrahepatic fat content, as well as QoL and sleep seemed to be involved at some point in the development of glucose intolerance in hemodialysis patients. Means of reducing fat depots in the liver and splachnic area might prove promising in combating IR and cardiovascular risk in hemodialysis patients.
    • Passive heating and glycaemic control in non-diabetic and diabetic individuals: A systematic review and meta-analysis

      Maley, MJ; Hunt, AP; Stewart, IB; Faulkner, SH; Minett, GM; Institute of Health and Biomedical Innovation, School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia. (Public Library of Science (PLoS), 2019-03-22)
      © 2019 Maley et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Objective Passive heating (PH) has begun to gain research attention as an alternative therapy for car-dio-metabolic diseases. Whether PH improves glycaemic control in diabetic and non-diabetic individuals is unknown. This study aims to review and conduct a meta-analysis of published literature relating to PH and glycaemic control. Methods Electronic data sources, PubMed, Embase and Web of Science from inception to July 2018 were searched for randomised controlled trials (RCT) studying the effect of PH on glycaemic control in diabetic or non-diabetic individuals. To measure the treatment effect, standardised mean differences (SMD) with 95% confidence intervals (CI) were calculated. Results Fourteen articles were included in the meta-analysis. Following a glucose load, glucose concentration was greater during PH in non-diabetic (SMD 0.75, 95% CI 1.02 to 0.48, P < 0.001) and diabetic individuals (SMD 0.27, 95% CI 0.52 to 0.02, P = 0.030). In non-diabetic individuals, glycaemic control did not differ between PH and control only (SMD 0.11, 95% CI 0.44 to -0.22, P > 0.050) and a glucose challenge given within 24 hours post-heating (SMD 0.30, 95% CI 0.62 to -0.02, P > 0.050). Conclusion PH preceded by a glucose load results in acute glucose intolerance in non-diabetic and diabetic individuals. However, heating a non-diabetic individual without a glucose load appears not to affect glycaemic control. Likewise, a glucose challenge given within 24 hours of a single-bout of heating does not affect glucose tolerance in non-diabetic individuals. Despite the promise PH may hold, no short-term benefit to glucose tolerance is observed in non-diabetic individuals. More research is needed to elucidate whether this alternative therapy benefits diabetic individuals.