• Eccentric exercise affects the upper limbs more than the lower limbs in position sense and reaction angle

      Paschalis, Vassilis; Nikolaidis, Michalis G.; Theodorou, Anastasios; Giakas, Giannis; Jamurtas, Athanasios; Koutedakis, Yiannis (Routledge (Taylor & Francis Group), 2010)
      In this study, we investigated the effect of eccentric exercise on position sense and reaction angle of the elbow and knee flexors. Twelve males underwent two eccentric exercise sessions involving a randomized crossover design. In the first session participants used their elbow flexors and in the other session their knee flexors. Muscle damage indices, position sense, and joint reaction angle to release of the elbow and knee flexors were measured before, immediately after, and up to 7 days after exercise. Exercise induced greater muscle damage in the elbow flexors than knee flexors. Exercise disturbed position sense of the elbow and knee joint. For both limbs, the participants adopted a more extended position than the reference angle. The elbow and knee joint reaction angles to release increased after exercise for both the elbow and knee flexors. The disturbances in position sense and reaction angle after exercise were greater in the elbow flexors than knee flexors. The elbow flexors remained more accurate and faster than the knee flexors at all time points. These results may be explained by the higher density of muscle spindles and the lower innervation ratio of the elbow flexors compared with the knee flexors, as well as the fact that the arms are more accustomed than the legs to perform fast and accurate movements.
    • Position sense and reaction angle after eccentric exercise: the repeated bout effect.

      Paschalis, Vassilis; Nikolaidis, Michalis G.; Giakas, Giannis; Jamurtas, Athanasios Z.; Owolabi, Emmanuel O.; Koutedakis, Yiannis (Springer-Verlag, 2008)
      The purpose of the present investigation was to examine the effects of a repeated eccentric exercise on position sense and muscle reaction angle. Fourteen healthy women underwent an isokinetic exercise session on their knee flexors, which was repeated after 4 weeks. Muscle damage indices, position sense and joint reaction angle of the knee were examined before, immediately after, as well as at 1, 2, 3, 4 and 7 days after exercise. The second exercise bout induced significantly lesser effects in all muscle damage indices as well as lesser disturbances in position sense and reaction angle when compared to the first one. The main finding of this study is that position sense and joint reaction angle to release of the lower limbs may adapt in response to a repeated bout of eccentric exercise, leading to less disturbances in position sense and reaction angle after the second bout of exercise.
    • The effect of eccentric exercise on position sense and joint reaction angle of the lower limbs.

      Paschalis, Vassilis; Nikolaidis, Michalis G.; Giakas, Giannis; Jamurtas, Athanasios Z.; Pappas, A.; Koutedakis, Yiannis (Wiley, 2007)
      Impaired position sense and impaired joint reaction angle of the lower limbs after muscle-damaging activities is a serious functional limitation that may lead to an increased risk of injury, particularly in older populations. The purpose of the present study was to examine whether position sense and joint reaction angle to release can be affected by eccentric exercise-induced muscle damage. Twelve women underwent an isokinetic exercise session of the lower limb. Isometric peak torque, delayed-onset muscle soreness, serum creatine kinase, position sense, and knee joint reaction angle to release were examined before, immediately after, and 24, 48, and 72 h post-exercise. Due to the effect of eccentric exercise, subjects persistently placed their lower limb at a more extended position, representing a shorter knee extensor muscle. Eccentric exercise increased the knee reaction angle of the lower limb after release from 0 degrees and 15 degrees but not from 30 degrees and 45 degrees . Position sense and joint reaction to release were similarly affected by eccentric exercise and independently of visual feedback. Position sense was impaired only immediately post-exercise (probably due to muscle fatigue), whereas impairment of the reaction angle to release persisted up to 3 days post-exercise (probably due to muscle damage). Attenuation of position sense and joint reaction angle of the lower limbs after damaging activities is a serious functional limitation that may lead to an increase risk of injury, particularly in older populations.