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Citations from patents to scientific publications provide useful evidence about the commercial impact 
of academic research but automatically searchable databases are needed to exploit this connection 
for large scale patent citation evaluations. Google covers multiple different international patent office 
databases but does not index patent citations or allow automatic searches. In response, this article 
introduces a semi-automatic indirect method via Bing to extract and filter patent citations from 
Google to academic papers with an overall precision of 98%. The method was evaluated with 322,192 
science and engineering Scopus articles from every second year during 1996-2012. Although manual 
Google Patent searches give more results, especially for articles with many patent citations, the 
difference is not large enough to be a major problem. Within Biomedical Engineering, Biotechnology, 
and Pharmacology & Pharmaceutics, 7%-10% of Scopus articles had at least one patent citation but 
other fields had far fewer so patent citation analysis is only relevant for a minority of publications. 
Low but positive correlations between Google Patent citations and Scopus citations across all fields 
suggests that traditional citation counts cannot substitute for patent citations when evaluating 
research, however.    

Introduction  
Bibliometric methods are commonly used to help assess the research impact of scientific publications 
based upon citations in conventional citation indexes, such as the Web of Science (WoS) and Scopus. 
However, some scholarly publications have a commercial utility that does not directly translate into 
academic citations. Since governments value research that has commercial value, alternative methods 
are needed to assess it in order to track it or adequately reward its authors. Citations to academic 
publications from patents, for instance, suggest the commercial value or at least technological 
innovation of the cited article. In some cases, the invention may even have been triggered by the 
academic research (Verbeek, et al., 2002). Citations from patents have been used to assess the 
relationship between science and industry (e.g., Narin & Olivastro, 1992; Schmoch, 1993; Narin, 
Hamilton, & Olivastro, 1997). Of the many bibliometric studies using patent citations (e.g., Tijssen, 
Buter, & Van Leeuwen, 2000; Tijssen, 2001; Callaert et al., 2006; Meyer, Debackere, & Glänzel, 2010; 
Callaert, Grouwels, & van Looy, 2012; Roach & Cohen, 2013), some applications include assessing the 
technological value of academic journals (Huang, Huang, & Chen, 2014; Liaw, Chan, Fan, & Chiang, 
2014), the research performance of firms (Nagaoka, 2007; Subramanian & Soh, 2010; Hung, 2012), 
university-industry knowledge relationships (Leydesdorff, 2004) and the research performance of 
countries (Van Looy et al., 2003). Hence patent citations are an important data source for bibliometrics 
but, as discussed below, they are difficult to use for large scale studies. 
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Bibliometric studies of patent citations can use time-consuming manual searches of patent databases, 
such as Google Patents or the Derwent World Patents Index, none of which currently include an 
academic citation index to aid the process. This is difficult for researchers or evaluators who want to 
estimate the overall citation impact of large numbers of articles from a reasonably comprehensive 
collection of patents (Verbeek et al., 2002; Shirabe, 2014) and so many studies are restricted to patents 
from a narrow range of years and disciplines (e.g., Tijssen, Buter & van Leeuwen, 2000; Meyer, 2003; 
Callaert et al., 2006; Meyer, Debackere, & Glänzel, 2010; Callaert, Grouwels, & van Looy, 2012). 
Although attempts have been made to partially automate this process (e.g., Lawson, Kemp, Lynch, & 
Chowdhury, 1996; Nanba, Anzen, & Okumura, 2008; Lopez, 2010; Ma, Sun, Wang, & Yang, 2010; 
Callaert, Grouwels, & van Looy, 2012), these methods require all the patents to be downloaded or 
collected as a first step, which is inefficient and requires repeated downloading to keep the results up-
to-date.  

In response to the above problems, this article introduces a practical method to help evaluators and 
funders to extract patent citation counts from Google Patents for large collections of academic articles. 
Google Patents contains a large collection of fully searchable patents from the United States Patent and 
Trademark Office (USPTO) since 1790 and the European Patent Office (EPO) since 1978 
(https://support.google.com/faqs/answer/2539193?). It also indexes patents from the World 
Intellectual Property Organization (WIPO), Canada, China and Germany. Google Patents is not a citation 
index but its full-text search capability can be used to locate citations to other scientific publications in 
the patent references. It does not support automatic API searches 
(https://developers.google.com/patent-search/) and its main search interface is impractical for large-
scale research evaluations. To solve these problems, the new method introduced here uses automatic 
Bing searches (exploiting Bing’s crawl of the Google Patents website) in combination with automatic 
duplicate results filtering of the data returned by Bing. The method was evaluated with a study of 
citations to 322,192 Scopus articles across sixteen science and engineering fields and manual checks of a 
sample of the search results.  

Patent Citations 
Three decades ago, Narin and Noma (1985) first convincingly argued that patent citations to scientific 
papers could be used to investigate the relationship between science and technology. They found a 
significant number of citations from US biotechnology patents 1978-1980 to scientific publications. 
About half (48%) of the non-patent references (i.e., patent citations to documents other than other 
patents) were to journal articles. A slightly larger proportion (56%) was found later for Netherlands-
invented U.S. patents between 1982 and 1985 in all technological fields (van Vianen, Moed, & van Raan, 
1990) and so it is likely that academic research is the most important non-patent source of evidence for 
U.S. patents. A large-scale study analysed 430,226 non-patent references in about 397,600 U.S. patents 
issued 1987-1988 and 1993-1994 (Narin, Hamilton, & Olivastro, 1997). For 1993-1994 patents there 
were 1.5 non-patent references per patent. About 73% of the papers cited by industry patents were 
public science, authored at academic, governmental, and other public institutions, with the remaining 
27% authored by industrial scientists. There was a strong tendency for inventors to cite articles authored 
in their own country, at prestigious universities and laboratories, and supported by well-known founding 
bodies such as the National Institute of Health (NIH) and The National Science Foundation (NSF). This 
confirms that public science plays an important role in supporting U.S. industry and technology. 
Instructions in the US for applicants to include a complete list of references to the state of the art have 
led to 3.5 times more non-patent references than in European patents, however (Michel & Bettels, 
2001), and so other patent databases may contain substantially fewer academic citations. 



Out of 33,127 pharmaceutical EPO patents 1990-1997, 46.5% of the non-patent references were to 
scientific articles in ISI (Institute for Scientific Information) databases (now WoS) (Brusoni, Criscuolo, & 

Geuna, 2005). A study of 10,000 patents from 1991-2001 found that 55% (USPTO) and 64% (EPO) of the 
non-patent references were to journal articles (Callaert et al., 2006). Similarly, in Chinese-authored 
USPTO patents 1995–2004, 64% of the non-patent references were to journal articles (Guan & He, 2007) 
and in New Zealand USPTO patents 1976-2004, 65% of the non-patent references were to either WoS-
indexed journals (52.6%) or other articles (12.6%) (He & Deng, 2007). In contrast,  90% of the non-patent 
references were to journal articles in study of 6,274 USPTO genetics patents 1980–2004 (Lo, 2010), 
revealing the importance of disciplinary differences. Overall, however, the majority of non-patent 
references in patents are probably to scientific articles.  

A study of patent citations to Dutch research papers from U.S. patents 1987-1996 found a low but 
statistically significant correlation (Pearson r=0.16, n=2,241) between academic citations and USPTO 
citations to Dutch papers from 1993-1996, suggesting that academic and commercial impact have 
something in common (Tijssen, Buter, & van Leeuwen, 2000). Supporting this, although nearly all 
respondents (94%) to a survey of 35 Dutch inventors believed that their internal research was important 
or critical for their patents, non-patent citations were important sources of information in 70% of cases. 
The majority of these non-patent citations were created by the applicants themselves rather than by 
examiners (Tijssen, Buter, & van Leeuwen, 2000). Applicants were also found to create more references 
than did examiners for 502,687 patents issued by USPTO during 2001-2003, with the difference being 
26% (Sampat, 2004).  

Citations in patents can reflect the differing citing motivations of both patent authors and examiners 
(Schmoch, 1993; Meyer, 2000a; Oppenheim, 2000) and some do not reflect technological innovation 
(Jaffe, Trajtenberg, & Fogarty, 2000), although this problem is less frequent in self-citations (Li et al., 
2014). Citations from patent examiners probably do not reflect knowledge flows from public research to 
industry (Alcacer & Gittelman 2006; Alcácer, Gittelman, & Sampat, 2009; Roach & Cohen, 2013), but this 
is not a substantial problem because they are in a minority (Tijssen, Buter, & Van Leeuwen, 2000; 
Sampat, 2004; Lemley & Sampat 2010). The share of scientific references in patents seems to differ 
across technological domains (Callaert et al. 2006), patent offices (Michel & Bettels, 2001) and between 
domestic and international patents (Tijssen, 2001) and so results from one investigation may not be 
valid in other contexts. Overall, however, scientific references in patents can be used cautiously as 
indicators of the impact of science on technology (e.g., Meyer, 2000b; Callaert, Pellens, & Van Looy, 
2014). 

A study of the relationship between patent citations and citation impact for articles from the Science 
Citation Index (SCI) matched nanoscience and nanotechnology SCI articles 1991–2004 with patent 
citations in the Derwent Innovations Index (DII) up to 2004. Few (4.6% or 7,000) of the SCI papers had 
received at least one patent citation and less than 1.5% (2,000) had been cited at least twice. However, 
about 14% of the most cited papers had also been cited in patents, indicating that highly cited articles 
are more likely to receive patent citations in this field (Meyer, Debackere, & Glänzel, 2010).  

Non-patent citations have been used to indicate the technological value of academic journals in a similar 
way to Journal Impact Factors (JIFs) for scientific impact (Huang, Huang, & Chen, 2014; Liaw, Chan, Fan, 
& Chiang, 2014). One study matched the references in 2011 US patents with journal articles published in 
journals in the 2011 Journal Citation Reports (JCR) to generate five and ten-year Technological Impact 
Factors (TIFs). There were low positive correlations between five and ten-year TIFs and JIFs, suggesting 
that TIFs may reflect a genuinely different type of impact (Huang, Huang, & Chen, 2014).  



Text mining techniques to extract information from patents, such as with keywords from titles or 
abstracts, can be used for patent analyses (e.g., Yoon & Park, 2004; Tseng, Lin, & Lin, 2007; Lee, Yoon, & 
Park, 2009). Several studies have used keywords in patent titles to analyse technical topics (Han et al., 
2014), technological trends (Courtial, Callon, & Sigogneau, 1993) or university–industry relationships 
(Leydesdorff, 2004).   

Patents play a more significant role in some technological fields than in others (see Cohen, 2010). 
According to World Intellectual Property Organization (WIPO) statistics, the share of US patent 
applications between 1999 – 2013 is higher in technology fields such as Computer Technology (10.8%), 
Medical Technology (7.9%) and Pharmaceuticals (6.3%) than in other fields 
(http://www.wipo.int/ipstats/en/statistics/country_profile/profile.jsp?code=US) Another issue is that 
there might be some areas that are frequently patented but these patents are rarely informed by 
scientific research. In contrast, Biotechnology, biomedical science and pharmaceutics have a high 
linkage with scientific research, as discussed above (see Narin & Olivastro 1992; Narin, Hamilton, & 
Olivastro, 1997; Verbeek et al. 2002).  

Experiments in Web Citation Extraction  
Web-based citation analyses of academic publications have the potential to provide data about the 
wider impact of research beyond that of conventional citation indicators (Cronin, 2001). For example, 
webometric investigations have attempted to extract impact evidence from scholarly articles, digitised 
books, clinical guidelines, online presentations, and academic course syllabi on the web. 

The Web: Counting citations to academic articles from all web pages provides a free impact indicator 
that correlates with conventional citations at both the article and journal levels (Vaughan & Shaw, 2003, 
2005). Most of these web citations originate from web CVs, journal tables of contents and library web 
sites, which are mainly created for navigational, self-publicity or current awareness (Kousha & Thelwall, 
2007b). In response, later studies extracted web citations from specific parts of the web in order to get 
more targeted information for the impact assessment.  

Google Scholar: Google Scholar indexes citations from documents that are online or provided by 
publishers. It seems to cover about 88% (100 million) of the English-language scholarly documents 
accessible on the web (Khabsa & Giles, 2014), which is double the size of WoS (about 53 million: 
authors' own WoS searches in March 2015). Google Scholar indexes more citations than do WoS and 
Scopus in many fields, especially in the social sciences, arts and humanities and computing (Meho & 
Yang 2007; Kousha & Thelwall, 2007a; Bar-Ilan, 2008; Kulkarni, Aziz, Shams, & Busse, 2009). Although 
the Publish or Perish software can be used to automate data gathering from Google Scholar in some 
extent (Harzing & van der Wal, 2008),  it cannot be used to extract citations from Google patents. The 
substantial coverage of Google Scholar seem to be useful for assessments of recently-published, in press 
publications and other publications (e.g., non-English) which have been invisible in conventional citation 
indexes. Hence, the derived citation indicators from Google Scholar such as h-index found to be much 
higher than either WoS or Scopus (e.g., Amara & Landry, 2012; De Groote & Raszewski, 2012). 
Moreover, the retroactive growth of Google Scholar citation seems to be considerably higher than WoS, 
making it a promising tool for citation tracking (de Winter, Zadpoor, & Dodou, 2014).  Nonetheless, the 
lack of quality control and potential for manipulation of citation results makes it problematic to use 
Google Scholar for impact assessments (e.g., Jacso 2011; Beel & Gipp, 2010; López-Cózar, Robinson-
García, & Torres-Salinas, 2014). Google Scholar includes citations from patents but extensive manual 
searching and filtering are needed to locate them and automatic searching is not allowed for this.  

http://www.wipo.int/ipstats/en/statistics/country_profile/profile.jsp?code=US


Google Books: Google Books does not index citations but contains digitised versions of millions of 
books and can be searched for citations (Kousha & Thelwall, 2009). Google Books citations are useful for 
the impact assessment of research, especially in book-based fields, because existing citation indexes 
include few citations from books (Kousha, Thelwall, & Rezaie, 2011). Although the Google Books API 
(Applications Programming Interface) can be used to automate citation counting from digitised books 
(Kousha & Thelwall, 2014) and it uses similar scanning technology to Google Patents, Google Books 
searches do not include citations from patents. 

Online Presentations: Citations from online presentations can give impact evidence in conference-
based subject areas, such as computer science and engineering, where proceedings papers are 
important. Many conference papers have associated presentation files (e.g., in Microsoft PowerPoint) 
that are shared online (e.g., in slideshare.net or slideshow.com). Citations from presentations can be 
collected by automatic Bing searches with web queries that combine bibliographic information with the 
advanced search operator filetype:ppt to restrict the results to presentation files (Thelwall & Kousha, 
2008). 

Clinical Guidelines: Citations from clinical guidelines directly reflect the impact of published research 
on the treatment of patients and are to some extent the health equivalent of patent citations. These 
citations can sometimes be systematically gathered from websites that publish them, such as the 
National Institute of Health and Clinical Excellence (NICE) site in the UK. A study of NICE citations using 
this method found that articles cited in guidelines are more likely to be highly cited in WoS (Thelwall & 
Maflahi, 2015).  

Academic Syllabi: Mentions of academic outputs in course reading lists can be used as an indicator of 
their value for teaching utility of publications (Kousha & Thelwall, 2008) and this is particularly useful for 
textbooks and introductory science books that have primarily educational value. It is possible to 
automatically count mentions of monographs in online academic syllabi through a combination of Bing 
searches and rules to filter out false matches. Over a third of 14,000 monographs in one study had at 
least one academic syllabus mention, with more in the arts and humanities (56%) and social sciences 
(52%), confirming the importance of monographs for teaching in book-based subject areas (Kousha & 
Thelwall, in press).  

In summary, there is empirical evidence that different types of citations can be extracted from the web 
for impact assessment. Nevertheless, no previous study has used an automatic method to extract large 
numbers of patent citations from the web. 

Research Questions  
This study introduces and assesses a new method to semi-automatically extract patent citations on a 
large scale from the web. The technique exploits both the Google Patents database and the Bing API 
automatic search interface. The following questions drive the evaluation and investigations into the 
value of the extracted information.  

1. Can citations to academic articles be automatically extracted from the Google Patent database 
with an acceptable degree of coverage and accuracy?  

2. Do Google Patent citations correlate with Scopus citations to academic articles? 
3. How do publication date and discipline affect the answers to the above questions? 
4. Which patent offices do the Google Patent results mainly originate from? 



5. Are the topic areas that tend to attract Google Patent citations the same as the topic areas that 
tend to attract Scopus citations?  

Methods  
The research design is to use the new method to extract Google Patent citations to a large number of 
academic articles from multiple fields, and then to assess a random sample for coverage and accuracy 
(RQ1), to correlate the results against citation counts separately by field (RQ2), to analyse the main 
results by year and discipline (RQ3). The patent office origins were checked separately (RQ4) and a 
method introduced to analyse keywords (RQ5).  

Data Sets 
Bibliographic information and citation counts for English language articles from every second year 1996-
2012 were extracted from Scopus from sixteen science and engineering fields (see Table 3). These years 
were selected to investigate the impact of time on citations to relatively recent academic articles in 
patents. Older articles are unlikely to be relevant to research evaluations and newer articles are unlikely 
to have attracted patent citations, given the time delay between submitting a patent and getting it 
approved. The sixteen science and engineering fields were selected to represent a range of different 
subject areas that seem likely to be useful for patents and so represent an estimated best case scenario 
for patent citation analysis. 

The search command subjmain was used in the advance Scopus search interface to retrieve publications 
in a specific field (e.g., subjmain(1303) for Biochemistry). The results were limited to articles (excluding 
books, editorial materials, letters, notes, short surveys and reviews) within the selected subject areas. 
English language articles only were selected because Google Patents largely covers US and European 
patents in English and citations to non-English articles might be underrepresented in the results. The 
inclusion of other patents might therefore have biased the findings. Elsevier's Scopus was chosen 
instead of WoS due to its greater coverage of international academic publications (e.g., 20,000 peer-
reviewed journals) and its feature to export citation information for large numbers of articles (20,000 
records via email), enabling a large scale evaluation. 

For each selected field and year, a random sample of 2,250 articles was taken from the Scopus set (e.g., 
Biotechnology articles published in 2002). Thus, 20,250 Scopus records were initially gathered for each 
field (2,250 * 9 years = 20,250). Cases where the Scopus bibliographic information was too incomplete 
to generate effective patent searches were removed from the samples. For instance, some Scopus 
records lacked author information, giving “Anon” or “Dull” instead. Scopus articles with less than three 
words in their titles were also excluded. Some of these were non-article documents (e.g., Preface, 
Clinical quiz, Technology summary) that apparently were incorrectly labelled as articles in Scopus. 
Moreover, very short titles can generate false search matches (e.g., “Dietary fiber”, “Material 
developments”, “Trace analysis”) even when they are combined with authors names (see also the 
limitations). Thus, a few records were excluded from the initial sample of articles, ranging from 55 in 
Pharmacology & Pharmaceutics to 204 in Control & Systems Engineering (Table 3).  

Automatic Google Patent Searches with Bing  
Bing was used for automatic searches because it is the only major search engine that supports API 
searches and initial testing suggested that it indexes much of Google Patents. The free software 
Webometric Analyst (http://lexiurl.wlv.ac.uk) was used to perform automatic searches with the Bing 
API. The queries were automatically generated from the Scopus bibliographic information using an 
application exclusively designed in Webometric Analyst for this purpose (see “Make Google Patent 

http://lexiurl.wlv.ac.uk/


Searches for Scopus/WoS Data” option in “Make Searches” menu): the first author last name, the first 
(up to) ten terms of the article title as a phrase search, and the publication year. The 
site:google.com/patents command was added to each query to limit the results to the Google Patents 
website, as the examples below show.  

- Shim "Transdermal delivery of mixnoxidil with block copolymer nanoparticles" 2004  
site:google.com/patents 

- Doldi "Intragastric balloon in obese patients" 2000  site:google.com/patents 
- Vidic "Uptake of elemental mercury vapors by activated carbons" 1996  site:google.com/patents 
 

Journal names were not included in the queries because a variety of abbreviations are used in patents 
(e.g., “Mol. Plant-Microbe Interact.” or “Mol Plant Microbe In”) and this would reduce the number of 
correct matches. Microsoft allows 5,000 free queries per month for the Bing API but additional queries 
can be purchased from Microsoft and used in Webometric Analyst. 

Removing Duplicate Matches 
In a few cases the Bing search results included multiple versions of the same or overlapping patents, 
such as the initially submitted version and the finally accepted one, or an original patent and a 
continuation or continuation-in-part. In order to avoid counting both, we filtered out patents with the 
same titles and descriptions in the Bing API search results. For instance, we found three citation matches 
from the same query with the identical condensed titles “Nerve stimulation for treating ...” (first column 
in Table 1) in the Bing results. However, only two matches were unique and one was a duplicate. Bing 
shortens patent titles in its results and therefore omitting search matches based on titles alone (after “-
“in the title field) may exclude relevant matches (e.g., the third row in Table 1). Hence, as a practical 
method a filtering capability was added to Webometric Analyst to exclude duplicate matches based 
upon both titles and descriptions in the Bing results (see the Utility option in Webometric Analyst “Filter 
out duplicate title and description for the same query”). This removed about 3% (1,564 out of 52,453) of 
the initial Bing results searches, ranging from 1.4% Biochemistry & Molecular Biology to  4.6% Electrical 
& Electronic Engineering. This shows that the raw results from Bing API search to locate citations in 
Google Patents include duplicates (see Table 2) but suggests that they a low proportion of the results.   

Table 1. An example of non-duplicate and duplicate Bing API results. 

Title from  the Bing API 
search* 

Text description from the Bing API search Patent URL Complete patent title 
(first inventor's name) 

Patent US6892098 - 
Nerve stimulation for 
treating ... 
 
 

Deurloo K E et al., “Transverse tripolar 
stimulation of peripheral nerve: a modelling 
study of spatial selectivity,” Med Biol Eng 
Comput, 36(1) ... 1998, which is ... 

google.co
m/patents/
US6892098 

Nerve stimulation for treating 
spasticity, tremor, muscle weakness, 
and other motor disorders 
(Shai Ayal) 

Patent US7324853 - 
Nerve stimulation for 
treating ... 

Deurloo K E et al., “Transverse tripolar 
stimulation of peripheral nerve: a modelling 
study of spatial selectivity,” Med Biol Eng 
Comput, 36(1) ... 1998, which is ... 

google.co
m/patents/
US7324853 

Nerve stimulation for treating 
spasticity, tremor, muscle weakness, 
and other motor disorders 
(Shai Ayal) 

Patent US7885709 - 
Nerve stimulation for 
treating ... 

Nerve stimulation for treating disorders ... A 
number of patents describe ... “Transvers e 
tripolar stimulation of peripheral nerve: a 
modelling study of … 

google.co
m/patents/
US7885709 

Nerve stimulation for treating 
disorders  
(Tamir Ben-David) 

*Deurloo 1998 “Transverse tripolar stimulation of peripheral nerve: a modelling study" 
site:google.com/patentsbelow patents 

http://www.google.com/patents/US6892098
http://www.google.com/patents/US6892098
http://www.google.com/patents/US6892098
http://www.google.com/patents/US7324853
http://www.google.com/patents/US7324853
http://www.google.com/patents/US7324853
http://www.google.com/patents/US7885709
http://www.google.com/patents/US7885709
http://www.google.com/patents/US7885709


Manual Checks of the Bing API Searches 
Manually checking was used to investigate the coverage of the filtered automatic Bing searches. A 
stratified sample of 320 results was selected for this with five high, medium, low and uncited articles in 
the online patents from the original Bing API searches for each field (20 results * 16 fields = 320). Google 
Patent searches sometimes retrieve many results with similar titles, abstracts and inventors from 
different patent applications and different international patent offices (e.g., Google Patents: 
US20100298403, EP1904436, WO2007006700, CA2612211, CN101218204). To check for this, each 
article was searched for in the Google Patent main search interface and duplicate patents were 
identified by comparing the patent titles, authors and initial descriptions, but ignoring the patent 
number. Patents were considered to be duplicates if they described the same invention, even if the 
wording was slightly different because these changes were presumably due to revisions of the text 
rather than major changes to the product. 

Results and Discussion 
Estimating the Accuracy and Coverage of Bing API Searches 
The manual checking of the stratified sample of 320 articles (Uncited, low-cited, medium-cited and high-
cited) found that the Bing API results tended to be less comprehensive than the direct manual Google 
Patent searches. For uncited articles, we randomly selected five articles without citation in the Bing API 
search results across sixteen fields. For low-cited articles, we randomly chose five articles with one or 
two citations in the Bing API searches. For medium-cited articles, we calculated the median for each 
field after excluding articles with zero, one, two and five highly cited articles (see below) and used it as 
an indicator to select medium-cited articles. For instance, in Food Science, Environmental Science, 
Industrial & Manufacturing Engineering and Pharmacology & Pharmaceutics the medians were 4, but in 
Biotechnology and Biomedical Engineering the medians were 5 and 6 respectively. For highly-cited 
articles, we selected top five highly cited articles in each field in order to check the extreme citation 
results from the Bing against Google manual patent searches.  For instance, in Biomedical Engineering 
we selected articles with 139, 71, 69, 62 and 61 citations from the Bing API search results. Out of 80 
uncited articles from the Bing API searches, 8(10%) had (1 or 2) citations in the manual Google Patent 
searches. For instance, no results were found for the Bing API query Hsieh "Isolation and 
characterization of a functional A-type cyclin from maize" 1998 site:google.com/patents, whereas 
Google Patents retrieved two correct citations. Since 90% or more of the articles in each of the sixteen 
fields had no patent citations as returned by the Bing API searches, the uncited articles form the vast 
majority of the results and so the automatic searches give the same results as manual searches nearly all 
of the time. The situation is not the same for the more important cases where there are some patent 
matches, however. 

Google Patents also returned more correct matches than did the Bing API searches for the other three 
samples (Table 2). For example, the query Barga "Recovery guarantees for internet applications" 2004 in 
the Google Patents main search interface retrieved eight different results, only one of which was also 
present in the Bing searches. However, as shown in Table 2, about a third (31.2%) of the Google Patent 
manual search results were duplicates (at least from a citation counting perspective). In a few cases, 
Bing retrieved patent citations not returned by manual Google Patent searches, perhaps because Google 
Patents does not display all relevant results when there are many matches. As an example, the query 
Peng "Role of polymers in improving the results of stenting in" 1996 site:google.com/patents correctly 
matched 60 non-duplicate patents in Bing that were not in the Google Patents manual search results 
(e.g., US7794743, US8828418, US7285304, US7622070, US6986899). 



For each sample, the recall statistic from information retrieval can be estimated. This measures the 
percentage of the full set of matches found by any given search. It can be estimated by dividing the total 
number of Bing citations by the total of the combined Bing and manual unique results, as follows. 

 Uncited in Bing: Recall = 0/(0+10) or 0%. 

 Low cited in Bing: Recall = 126/(0+191) or 66%. 

 Medium cited in Bing: Recall = 456/(0+677) or 67%. 

 High cited in Bing: Recall = 3208/(273+3510) or 85%. 

Although based upon low numbers of articles and hence unreliable, these figures suggest that the semi-
automatic method tends to get at least two thirds of the citations to articles that it finds at least one 
citation for. 

Table 2. A comparison of the automatically filtered Bing API results and the Google Patent (GP) manual 
searches. 

Sample Articles 
checked 

Bing   
citations* 
(Median) 
 

All GP 
citations +  
(Median) 
 

GP non-
duplicate 
citations++ 
(Median) 

GP results 
not found 
by Bing 

Bing 
results 
not found 
by GP 

Uncited in Bing  80 0 (0) 11 (0) 10 (0) 10  0 

Low cited in Bing  80 126 (2)  279 (3)  191 (2)  65  0 

Medium cited in Bing  80 456 (5)  1,034 (11) 677 (8)  221  0 

High cited in Bing  80 3,208 (33.5) 5,054 (66.5) 3,510 (40.5) 302 273 

Total 320 3,790 (2.5)  6,378 (6)  4,388 (4.5)  598 273 
*Results from the Bing API search after automatically filtering out duplicate results 
+ Results from the manual Google Patent searches without duplicate filtering  
 ++Results from the manual Google Patent searches after manually filtering out duplicate results 
 

An extra manual check of the stratified sample of 560 Bing API results from all sixteen fields (35 results 
per field) gave an overall 98.4% precision (551 correct citation matches) for the automatic searches, 
identifying citations either in the non-patent reference sections (91.6% or 513) or in the main texts 
(6.8% or 38) of the full-text patents.  From the 1.6% (9 of 560) false matches, four results were from 
patent citations with the same title and author (inventor). For instance, the query Agrawal "Order 
preserving encryption for numeric data" 2004 site:google.com/patents captured a patent citation with a 
partially identical title and with the same author (Patent number: US20050147240, System and method 
for order preserving encryption for numeric data, Inventor: Rakesh Agrawal). Other false matches were 
related to retrieving titles and author names in different parts of the patents (e.g., “The invention relates 
to minimally invasive cardiac surgery.” for the query Mack "Minimally invasive cardiac surgery" 1996 in 
patent US8672998). Overall, however, the automatic method seems to give a high accuracy for the 
patent citation searches.  

Google Patent Citation Counts  
In all fields (Table 3) the vast majority of articles had no patent citations in the Bing results (and hence 
also in manual Google Patent searches; see above). Biomedical Engineering (10%), Biotechnology (9%), 
and Pharmacology & Pharmaceutics (7%) had the highest proportions of Scopus articles with at least 
one patent citation, suggesting that these fields either have a particularly direct commercial value or 
more of a patenting culture than others. These three field proportions at least triple those of Mechanical 

http://www.google.com/patents/US20050147240


Engineering (1.9%) and Energy Engineering (2.2%), showing that there are substantial disciplinary 
differences in the proportion of academic articles that are cited in patents.   

The Relationship between Google Patents and Scopus Citations 
There are statistically significant positive low correlations between Scopus and Google Patent citations 
from the Bing API searches in all fields (Table 3). Spearman correlations were used because citation data 
is typically skewed. Data for correlation tests should be separated by field and year (Fairclough & 
Thelwall, in press) for optimal accuracy, so see also Table 4 for more accurate results. The correlations 
are highest in Biomedical Engineering (.361), Biochemistry & Molecular Biology (.267), Biotechnology 
(.258), and Pharmacology & Pharmaceutics (.237) and lowest in Industrial & Manufacturing Engineering 
(.053), suggesting disciplinary differences in the relationship between patent and Scopus citations. The 
three high correlation subject areas had the highest proportions of articles with patent citations, 
suggesting that in the most patentable fields, traditional citations reflect commercial value most closely. 
Nevertheless, the low overall correlations suggest that the scientific research impact of academic 
articles is always only loosely related to their commercial impact, at least as reflected in patents, 
probably because applicants or patent examiners may tend to cite the most relevant sources such as 
other patents to justify their novelty contributions.  

Table 3. Google Patent citations via the Bing API searches and Scopus citations for articles published 
every second year 1996-2012 (n=322,192 overall).  

Scopus category 

Articles 
(1996-
2012) 

Google Patent 
citations (% with 
citation) median 
(mean) max. 

Scopus Citations (% 
with citation) 
median (mean) 
max. 

Spearman 
correlation 

Biochemistry & Molecular Biology 
20,127 

3,174, (5.4%) 
0(0.16) 51 

510,749, (80.4%) 
8(25.4) 4,017 

0.267** 

Biomedical Engineering 
20,076 

8,846, (10.1%) 
0(0.44) 149 

449,581, (71.6%) 
5(22.39) 3,429 

0.361** 

Biotechnology 20,169 5,488, (9.2%)  
0(0.27) 58 

469,916, (92%)  
12(23.3) 2,381 

0.258** 

Chemical Engineering 20,170 1,451, (2.9%)  
0(0.07) 39 

306,995, (87.6%)  
7(15.22) 964 

0.135** 

Computer Science 20,087 5,663, (5.9%)  
0(0.28) 95 

127,594, (58.2%)  
1(6.35) 2,296 

0.233** 

Control & Systems Engineering 
20,046 

2,992, (3.9%) 
0(0.15) 115 

231,749, (58.1%)  
1(11.56) 7,376 

0.188** 

Electrical & Electronic Engineering 20,174 4,153, (5.6%)  
0(0.21) 63 

383,897, (80%)  
5(19.03) 4,532 

0.199** 

Energy Engineering 
20,172 

1,170, (2.2%) 
0(0.06) 22 

218,937, (60.8%) 
2(10.9) 1,286 

0.132** 

Environmental Engineering 20,157 1,266, (2.7%)  
0(0.06) 27 

499,299, (90.8%)  
11(24.77) 3,506 

0.154** 

Food Science 20,153 2,305, (5.5%)  
0(0.11) 26 

446,101, (94.1%) 
12(22.14) 1,157 

0.205** 

Industrial & Manufacturing 
Engineering 

20,192 1,504, (2.5%)  
0(0.07) 67 

147,145, (57.9%)  
1(7.29) 815 

0.053** 

Mechanical Engineering 20,176 1,126, (1.9%)  277,360, (82.5%) 0.134** 



0(0.06) 33 6(13.75) 900 

Pharmacology & Pharmaceutics 20,195 3,777, (6.8%)  
0(0.19) 82 

438,882, (89.8%)  
11(21.73) 1,408 

0.237** 

Physics Instruments & 
Instrumentation  20,062 

1,848, (2.8%) 
0(0.09) 87 

185,033, (66.5%) 
3(9.2) 688 

0.160** 

Polymer Science 
20,124 

2,552, (4.6%) 
0(0.13) 41 

329,639, (90.3%) 
8(16.4) 1,181 

0.195** 

Surgery  
20,112 

2,010, (2.9%) 
0(0.1) 45 

385,463, (90.1%) 
9(19.2) 1,171 

0.158** 

** Significant at the p = 0.01 level. 
 

The weak but significant positive correlations between patents and Scopus citations across all sixteen 
science and engineering fields analysed suggests that academic papers are more likely to be 
commercially valuable if they are more highly cited (see also Tijssen, Buter, & van Leeuwen, 2000). The 
very weak relationship shows that academic citation counts would be a very poor substitute for patent 
citation counts, however, confirming that it is important to count the latter directly. The reason for the 
overall weak relationship might be that patents are less numerous and contain less citations than do 
journal articles, resulting in low patent citation counts and few papers with any patent citations at all. 
Unlike academics, inventors presumably also tend to be mainly interested in the most applied scientific 
research rather than purely theoretical contributions (Schmoch, 1993; Meyer, 2000a). In contrast, 
papers with high patent citation counts tend to be highly cited by academic publications (Meyer, 
Debackere, & Glänzel, 2010). Hence, it is useful to also check whether papers with high patent citation 
counts also tend to receive academic citations (see examples for the top patent citations across field, 
http://figshare.com/articles/GooglePatents_Appen_pdf/1418234). One example is the article “Lind, R. 
et al. (1998). The network vehicle-a glimpse into the future of mobile multi-media. SAE Technical 
Papers”, which had no Scopus citations (as of March 2015) but had been cited in 67 patents. This may 
reflect the industry-focused nature of the SAE Technical Papers journal, but this does not undermine the 
contribution of the cited paper. Nevertheless, some patent citations do not reflect the technological 
contribution of the cited research (Jaffe, Trajtenberg, & Fogarty, 2000) and so qualitative evidence 
would be needed to confirm that an individual highly cited article had made a genuine commercial 
contribution.  

Patent Citations by Year 
Citations take time to accrue, whether from patents or academic articles, and so the publication year is 
important. There are higher Spearman correlations between Scopus and Google Patent citations for 
longer time periods in most fields (Table 4), presumably because the additional data makes the statistic 
more powerful. In Biomedical Engineering, for instance, 0.2% of the articles sampled from 2012 had one 
or more patent citations (r=.045) compared with 19.5% of the articles sampled from 1996 (r=.483). One 
reason for the large increases could be that it takes a long time for patents to be processed and granted 
– over two years for the USPTO (http://www.uspto.gov/learning-and-resources/general-faqs) – and 
industrial inventors may also be slower to patent than researchers are to publish, or may be less up-to-
date with the academic literature if they are not publishing scientists. 

From the results, long time periods are needed for assessing the commercial or technical value of 
academic publications based on patent citations (see also: Breschi et al., 2006). For the fields analysed, 
five years would be an absolute minimum since the figures are very low for 2012, and even fifteen years 
would give substantially more results than ten years. The length of these windows seem to rule out the 
use of patent citation analysis for current research but would nevertheless still be useful for longer term 

http://www.uspto.gov/learning-and-resources/general-faqs


evaluations, such as that of the UK Research Excellence Framework, for which researchers must 
demonstrate societal impact for research that is up to 20 years old (REF, 2011).  

Table 4. Articles with at least one Google Patent citation (Spearman correlation between Scopus and 
Google patent citations) by year (n=322,192 overall). 

Fields  1996 1998 2000 2002 2004 2006 2008 2010 2012 

Biochemistry & 
Molecular Biology 

4.4% 
(.297) 

6.1% 
(.318) 

9.0% 
(.328) 

7.7% 
(.283) 

7.3% 
(.262) 

6.2% 
(.260) 

5.1% 
(.245) 

2.5% 
(.147) 

0.5% 
(.071) 

Biomedical 
Engineering 19.5% 

(.483) 
16.9% 
(.411) 

13.3% 
(.399) 

13.9% 
(.337) 

13% 
(.330) 

8.4% 
(.237) 

4.3% 
(.221) 

1.8% 
(.163) 

0.2% 
(.045) 

Biotechnology 13.3% 
(.273) 

14.1% 
(.267) 

13.3% 
(.249) 

12.3% 
(.260) 

10.5% 
(.229) 

8.2% 
(.224) 

6.0% 
(.189) 

4.3% 
(.168) 

0.8% 
(.096) 

Chemical Engineering 5.0% 
(.166) 

4.4% 
(.123) 

3.8% 
(.165) 

3.7% 
(.159) 

3.1% 
(.141) 

2.4% 
(.137) 

1.9% 
(.100) 

1.4% 
(.094) 

0.4% 
(.082) 

Computer Science 15.7% 
(.293) 

8.6% 
(.240) 

10.3% 
(.325) 

7.2% 
(.253) 

6.8% 
(.247) 

3.2% 
(.146) 

1.2% 
(.113) 

0.4% 
(.080) 

0.1% 
(.052) 

Control & Systems 
Engineering 

7.2% 
(.226) 

7.7% 
(.210) 

6.9% 
(.194) 

5.1% 
(.178) 

4.7% 
(.175) 

2.1% 
(.084) 

0.7% 
(.057) 

0.3% 
(0.061) 

0.04% 
(-.014) 

Electrical & Electronic 
Engineering 

10.2% 
(.205) 

10.1% 
(.247) 

9.5% 
(.296) 

7.4% 
(.230) 

6.2% 
(.220) 

4.0% 
(.150) 

1.9% 
(.120) 

0.6% 
(.057  ) 

0.1% 
(.005) 

Energy Engineering 3.6% 
(.142) 

3.1% 
(.137) 

3.1% 
(.152) 

3.0% 
(.139) 

2.9% 
(.158) 

1.6% 
(.095) 

1.7% 
(.090) 

0.5% 
(.016) 

0.0% 
(-.015) 

Environmental 
Engineering 

5.0% 
(.204) 

4.1% 
(.159) 

3.6% 
(.154) 

3.4% 
(.187) 

2.2% 
(.143) 

2.5% 
(.136) 

2.3% 
(.111) 

1.1% 
(.105) 

0.4% 
(.014) 

Food Science 8.8% 
(.198) 

8.6% 
(.239) 

8.5% 
(.240) 

8.3% 
(.198) 

5.9% 
(.164) 

4.7% 
(.153) 

3.1% 
(.132) 

1.3% 
(.103) 

0.3% 
(.050) 

Industrial & 
Manufacturing Eng. 

4.9% 
(.096) 

4.4% 
(.082) 

4.3% 
(.076) 

3.4% 
(.091) 

2.2% 
(.064) 

1.6% 
(.080) 

1.2% 
(.013) 

0.5% 
(.040) 

0.2% 
(-.015) 

Mechanical 
Engineering 

3.2% 
(.130) 

3.2% 
(.137) 

3.5% 
(.190) 

2.3% 
(.164) 

2.1% 
(.114) 

1.4% 
(.103) 

1.3% 
(.136) 

0.3% 
(.055) 

0.1% 
(.009) 

Pharmacology & 
Pharmaceutics 

8.8% 
(.227) 

9.7% 
(.239) 

9.9% 
(.256) 

10.1% 
(.235) 

8.3% 
(.214) 

6.6% 
(.245) 

4.6% 
(.182) 

2.6% 
(.134) 

0.7% 
(.080) 

Physics Instruments 4.5% 
(.165) 

6.2% 
(.180) 

5.1% 
(.224) 

3.8% 
(.176) 

2.6% 
(.154) 

1.5% 
(.046) 

1.3% 
(.111) 

0.5% 
(.027) 

0.04% 
(-.017) 

Polymer Science 6.9% 
(.217) 

7.4% 
(.192) 

6.7% 
(.221) 

6.3% 
(.224) 

5.4% 
(.204) 

4.4% 
(.186) 

2.9% 
(.159) 

1.4% 
(.083) 

0.2% 
(.021) 

Surgery  4.9% 
(.156) 

4.4% 
(.170) 

4.3% 
(.168) 

4.0% 
(.150) 

3.3%  
(.159) 

3.1% 
(.153) 

1.7% 
(.087) 

0.6% 
(.058) 

0.1% 
(.011) 

Bold figures: Correlations significant at the p = 0.01 level. Italic figures: Correlations significant at the p = 0.05 level. Normal 

figures: no statistically significant correlations between variables.  

Results by Patent Office 
The URLs of the Google Patent search results were used to assess the share of the citations that 
originated from the US (United States Patent and Trademark Office), WO (for World Intellectual 
Property Organization-WIPO), EP (for European Patent Office), CA (Canadian Intellectual Property 
Office), CN (State Intellectual Property Office of China) and DE (German Patent and Trade Mark Office). 
Over two thirds of the Google Patents citations in all fields were from US patents (Figure 1). This 



probably reflects the more extensive use of citations in USPTO patents than in the others covered as 
well and the English language selection criterion for the articles analysed. The relatively large size of the 
USPTO database is another important factor: since 1996 it has had at least three times as many 
applications per year as the other indexed offices except for China, which broke this pattern in about 
2008 and grew rapidly to overtake the US in about 2010 (WIPO, 2014, p14). Biochemistry & Molecular 
Biology (69%) and Food Science (69%), had the lowest proportion of citations from US patents and 
Computer Science (98%) had the highest, probably reflecting (but exaggerating) the relative 
international dominance of the US in these fields. The duplicate removal process eliminated 3% of the 
citations, irrespective of patent office (see methods), and this may have had a minor impact on the 
proportions. 

 

Figure 1. The patent office origins of the patent citations to the 322,192 Scopus articles investigated 
(n=322,192 overall). 

Patent-Cited Topics and Scopus-Cited Topics 
A simple heuristic was used to detect whether the topic areas that tended to attract patent citations 
were the same as those that tended to attract Scopus citations. For each subject area, all terms were 
extracted from the titles of the articles and converted to singular form, if plural. For each term, the 
number of times that it occurred in patent-cited articles was calculated and compared to the number of 
times it occurred in the remaining articles, using a difference in proportions test. The ten terms that 
occurred the most disproportionately often in patent-cited articles were then selected as potential 
indicators of important patentable topics within the field. To detect whether these terms were also 
associated with important Scopus citable topics, ranked lists were constructed in the same way for 
Scopus citations. Because patent citations are rarer than Scopus citations, a higher threshold should be 
used for Scopus citations, such as 10 or 100, but there is no obvious number to use. Since the objective 
was to identify topics that tended not to attract Scopus citations, a conservative approach was taken 
and three ranked lists were prepared: for 1 or more citations; for 10 or more citations; and for 100 or 
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more citations. Also as a conservative approach, top 30 lists were prepared for each Scopus category 
rather than top 10 lists. Each top 10 patent-cited term was counted as a patent-specific topic if it did not 
occur in any of the three top 30 Scopus lists. Table 5 illustrates the process for one category, showing, 
for example, that the term delivery associates with patent citations and Scopus citations but the term 
prodrug only associates with patent citations. This approach is a simplification and is likely to be more 
effective for more frequent terms because, other factors being equal, they are more likely to occur with 
one of the top 30 Scopus lists if they are more frequent overall. 

Table 5. The 10 most disproportionately used terms in the 1,369 patent cited articles out of the 20,195 
articles in Pharmacology& Pharmaceutics. 

Top 10 patent-
cited term 

Patent-cited 
articles 
(n=1369) 

Non-
patent 
cited 
articles 
(n=18826) 

Patent-
cited diff. 
in 
proportions 
test Z 

Scopus 1+ 
citations 
top 30 
rank* 

Scopus 10+ 
citations top 
30 rank* 

Scopus 100+ 
citations top 
30  rank* 

delivery 6.1%(83) 2.3%(438) 8.4 - - 9 

prodrug 1.5%(21) 0.3%(51) 7.6 - - - 

human 11.5%(157) 6.7%(1257) 6.7 5 2 20 

inhibitor 6.4%(87) 3.0%(574) 6.6 13 21 - 

encapsulated 0.7%(9) 0.1%(15) 6 - - - 

nanoparticle 2.1%(29) 0.7%(127) 5.9 - 24 8 

receptor 11.3%(155) 7.1%(1339) 5.7 1 1 7 

novel 5.6%(76) 2.9%(545) 5.5 - - - 

stabilized 0.4%(5) 0.0%(5) 5.4 - - - 

polymeric 0.9%(12) 0.2%(32) 5.4 - - - 
*Rank based on difference in proportions test Z-values for occurrence in the set of articles with at least n WoS citations  

In each subject area there are terms that occur disproportionately often in patent-cited articles but not 

disproportionately often in more highly Scopus-cited articles (Table 6). The results suggest that there are 

topics, approaches or objects of study that are of particular commercial or applied relevance (or are 

more patentable) but are less cited. In addition, the results also suggest that there is a bigger difference 

between patentable and (academic) citable topics in some research areas (e.g., Electrical & Electronic 

Engineering) than others (e.g., Biomedical Engineering). 

Table 6. The 10 most disproportionately used terms in the patent cited articles split by whether they are 
also in any one of three top 30 lists for academic citations. 

Subject Top ten patent-cited but not top thirty highly 

cited (x3) 

Top ten patent-cited and 

top thirty highly cited (x3) 

Biochemistry & 

Molecular Biology 

photodynamic capsicum PCR angiogenesis 

pluripotent 

Arabidopsis gene plant stem 

for 

Biomedical Engineering polyurethane cone-beam hydrogel  polymer tissue 

biodegradable calcium 

cement bone phosphate 

Biotechnology antibody recombinant 

libraries display antibodies hamster delivery 

cell engineering novel 

Chemical Engineering biomaterial phospholipid PSA sieve lactate CO2 



review negative complete colour 

Computer Science wearable interface email WWW 

 

rendering graphic speech 

access Java subdivision 

Control and Systems 

Engineering 

queries indexing video surgical 

micromachined reflectance appearance 

surgery 

segmentation handwriting 

Electrical & Electronic 

Engineering 

MPEG-2 multi-resolution database power-

efficient microprocessor constellation digital 

high-speed end-to-end 

Video 

Energy Engineering  stimulation insertion lead-acid microbial 

camera array 

electrolyte lithium cell 

electrode 

Environmental 

Engineering 

switchgrass anaerobically digested hollow-

fiber capture swing separation ethanol 

pretreatment 

Membrane 

Food Science eicosapentaenoic docosahexaenoic 

administered phytosterol resveratrol orange 

higher 

acid human cancer 

Industrial & 

Manufacturing Eng. 

diesel charge engine homogeneous ionization 

orbital power catalyst diode 

alkali-activated 

 

Mechanical Engineering micromachined accelerometer polysilicon 

microactuator gyroscope resonator  

silicon MEMS capacitive 

sensor 

Pharmacology & 

Pharmaceutics 

prodrug encapsulated novel stabilized 

polymeric 

delivery human inhibitor 

nanoparticle receptor 

Physics Instruments & 

Instrumentation  

gyroscope polysilicon accelerometer SOI 

microsystem 

micromachined bonding 

actuator MEMS cantilever 

Polymer Science resist flux extrusion benzoxazine oxetane 

polymeric 

osmosis membrane gas 

protein 

Surgery society vacuum-assisted morphogenetic 

automated wound filter tissue matrix 

engineering growth 

Limitations 
The results are subject to a number of limitations. Manual checks showed that the filtered Bing results 
missed 14% of the non-duplicate manual Google Patent matches (Table 2). The automatic patent 
searches therefore tend to reflect a subset of patent references covered by Google and are likely to be 
(small) underestimates of the total number of patent citations for articles. There may also be additional 
matches that Google does not return because it does not index the patent office or because its 
algorithm does not always return all results. Although Webometric Analyst allows up to 5,000 patent 
citation searches per month by having a free Windows Azure Marketplace key, for a larger patent 
citation searchers a fee-based subscription is required (see 
https://datamarket.azure.com/dataset/bing/search). 

Scopus articles with one or two word titles were excluded from the searches due to the prevalence of 
false matches and non-articles documents with short titles. This method excluded some relevant 



research articles (e.g., Short-bowel syndrome). Hence, future applications may try alternative queries, 
perhaps adding extra bibliographic information to the queries, such as the last names of the three first 
authors or common journal name abbreviations. Moreover, sometimes article titles contain non-
alphanumeric characters such as “…HBr(B1Σ+) emission from the ultraviolet…” or “…analysis using lab 
VIEW® and charm works™” which might undermine some searches. We excluded non-English Scopus 
articles from our dataset and this may undermine Google Patent citations from non-English patents, 
especially for the European, German Chinese patent offices. 

The method to filter out duplicate matches from the initial Bing API results is another limitation because 
some different patents have the same titles and descriptions in Bing. For instance, the query Olsson 
"Fermentation of lignocellulosic hydrolysates for ethanol production" 1996 site:google.com/patents 
returned four results from three different patent offices with the same title (Polypeptides having 
cellobiohydrolase activity and polynucleotides encoding same) and description and so the automatic 
filtering method only retained one of them (US8759023B2; US8771994B1; WO2010141325A1; 
EP2668270A1).  Manual checks showed that these patents were for different chemicals despite having 
the same titles, very similar wordings throughout, and citing the above article in the same context. For 
example, US8759023B2 is for, in part, "a polypeptide having at least 90% sequence identity to the 
sequence of amino acids 26 to 532 of SEQ ID NO: 4" and US8771994B1 is for, in part, "an isolated 
polypeptide, which has at least 95% sequence identity to the sequence of amino acids 21 to 446 of SEQ 
ID NO: 2". The patents were presumably copied from the first one with words changed only when 
necessary to reflect the new invention. Future research might be able to construct a method to avoid 
removing such matches, although there were only 3% duplicate citations removed and so it would have 
little impact on the overall results.  

The results might be affected by the choice of Scopus as the data source. To check for this, the Google 
Patent citations were compared to both WoS articles with Scopus articles published in 2004 across the 
same subject categories (Table 7). A random sample of WoS articles were taken in each selected field 
and the same automatic method was used to locate citations in Google Patents indexed by Bing and 
there were some differences between the samples from the two databases. The results suggest that 
WoS articles are more likely to receive patent citations than are Scopus articles, perhaps because WoS is 
more selective than Scopus. The correlations do not vary much according to the database used, 
however.  

Table 7. Secondary analyses of Google Patent citations to WoS-indexed and Scopus-indexed articles in 
2004.  

Discipline (Scopus categories) 

Sampled articles 
published in 
2004 from  
WoS (Scopus) 

% of articles with 
one or more 
Google Patent 
citations from 
 WoS (Scopus)* 

Correlations 
between 
 Google Patents and  
journal citations 
WoS (Scopus)** 

Biochemistry & Molecular Biology 2,236 (2,223) 10.7% (7.3%) 0.241 (0.262) 

Biomedical Engineering 2,241 (2,233) 15.4% (13%) 0.309 (0.330) 

Biotechnology 2,231 (2,241) 11.7% (10.5%) 0.216 (0.229) 

Chemical Engineering 2,229 (2,236) 4.8% (3.1%) 0.170 (0.135) 

Computer Science 2,232 (2,240) 8.6% (6.8%) 0.268 (0.241) 

Control and Systems Engineering 1,458 (2,190) 4% (4.7%) 0.191 (0.165) 

Electrical & Electronic Engineering 2,235 (2,245) 4.6% (6.2%) 0.162 (0.220) 



Energy Engineering  2,230 (2,234) 4.7% (2.9%) 0.170 (0.160) 

Environmental Engineering 2,235 (2,233) 3% (2.2%) 0.139 (0.136) 

Food Science 2,239 (2,235) 6.3% (5.9%) 0.172 (0.157) 

Industrial & Manufacturing Engineering 2,239 (2,271) 1.9% (2.2%) 0.099 (0.064) 

Mechanical Engineering 2,237 (2,233) 1.6% (2.1%) 0.135 (0.114) 

Pharmacology & Pharmaceutics 2,243 (2,233) 9.3% (8.3%) 0.089 (0.203) 

Physics Instruments & Instrumentation  1,701 (2,225) 4% (2.6%) 0.191 (0.154) 

Polymer Science 2,237 (2,241) 6.2% (5.4%) 0.204 (0.206) 

Surgery  2,241 (2,232) 3.4% (3.3%) 0.137 (0.154) 
*Higher values from WoS compared with Scopus are highlighted in bold.  
**All Spearman correlations are significant at the p = 0.01 level. 

Conclusions  
In answer to the first research question, the new method automates the process of identifying patent 
citations to academic papers with a high degree of accuracy (98%) and coverage. Although 13% of the 
manual Google patent results were not found, this is a relatively small percentage. Conventional citation 
databases are unable to track the commercial impacts of articles and this is especially important in some 
engineering fields that often produce academic research that directly leads to valuable inventions. This 
gap can be partly filled by patent citations, and this article has introduced a practical method to semi-
automatically extract patent citations from reasonably comprehensive and complete patent databases. 
It is free for small collections of articles but for large collections, the additional queries necessary must 
be purchased from Microsoft. Some additional manual searches and checking may be needed for 
articles with short or complex titles. 

In answer to the second research question, the low but statistically significant correlations between the 
Google Patents citations and Scopus citations to academic articles across all fields suggest that patent 
citations and traditional citations predominantly reflect different types of research contribution. It is 
therefore important to gather patent citations when evaluating research in order to avoid 
disadvantaging research with value that is not fully reflected within academia. The same is true for 
broad research topics (RQ5) since in all fields there are some that attract patent citations but not many 
traditional citations. Hence, funders should be careful if withdrawing funding from low cited research 
areas because some may attract patent citations instead. 

In answer to the third research question, there were clear disciplinary differences in the proportions of 
articles with at least one patent citation. This supports the previous finding that patents in fast growing 
subject areas, such as genetics and biotechnology, tend to cite more scientific literature (Narin & Noma, 
1985; Collins & Wyatt, 1988; Lo, 2010; Tijssen, 2001). The fields chosen for the study were all in 
commercially relevant areas and so the disciplinary differences are likely to be much larger across a 
wider range of fields. Hence, it would clearly not be fair to compare patent citations between different 
similar fields for evaluation purposes. The results are also highly dependent on time, and an absolute 
minimum of 5 years is needed to get substantial patent citation results, and much better results would 
be obtained for a fifteen year window. Policymakers should therefore not expect academic research to 
translate into commercial value in the short to medium term and should allow long time periods for 
commercial transfer evaluations (as in the UK REF impact case studies). 

The patent results from Google originate predominantly from the USPTO (RQ4) and so the method here 
should not be used in contexts where substantial numbers of relevant patents are expected to have 



been filed exclusively elsewhere. One reason for the large number of citations from the US patents 
could be that Google has greater coverage of the US patents than of EPO and WIPO patents. However, 
the extent to which non-patents sources are cited in patents may also be influenced by the different 
regulations and examination procedures in patent offices (see Michel & Bettels, 2001; Callaert et al, 
2006). Biochemical Engineering articles were most likely to attract patent citations (10%) and 
Mechanical Engineering articles were the least likely (2%), despite both being applied types of research 
that could reasonably be expected to generate patentable inventions. Moreover, the most patented 
areas were not the same as the most Scopus-cited areas (RQ5): for example, Mechanical Engineering 
articles (83%) were more likely to attract Scopus citations than were Biomedical Engineering articles 
(72%). The method is thus likely to be irrelevant in fields (including some applied research areas) that 
tend not to patent inventions. Other than these limitations, it seems that the new method is a valuable 
new tool for patent analysis to help evaluators assess the long term commercial impacts of academic 
research in some fields. 
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