
BDI for Intelligent Agents in Computer Games

N.P.Davies and Q.H.Mehdi
Computer Games Centre

School of Computing and Information Technology
University of Wolverhampton

Wolverhampton, UK
E-mail: N.P.Davies2@wlv.ac.uk

KEYWORDS

Deliberative Agents, Computer Games, Artificial
Intelligence.

ABSTRACT

With the emergence of complex computer games and
advanced gaming hardware, possibilities for
overcoming some of the deficiencies in traditional
game AI are becoming feasible. These deficiencies
include repetitive, predictable, and inhuman behaviour
are caused by the reliance on simple reactive AI
techniques. By using more sophisticated AI and agent
techniques, we intend to overcome some of these
problem areas. The aim of our research is to create new
forms of intelligent characters (agents) that will exhibit
human-like intelligence and provide more challenging
and entertaining virtual opponents and team mates for
computer games. We present here our prototype
application that implements a BDI agent system within
the 3D computer game Unreal Tournament via
GameBots and JavaBots technology.

INTRODUCTION

With this continued popularity of computer games,
game players are expecting new challenges with more
sophisticated games and game playing experiences.
Increases in processing power are now giving game
developers opportunities to develop novel techniques
to incorporate into their games. With graphics
capabilities now reaching the point where game
environments are becoming almost photorealistic,
some of this power must become available for AI
systems. Currently developers are looking for new and
inventive ways to keep the game players entertained.
The challenge is to produce artificial intelligence for
computer games characters that can utilise the
increased power afforded by improvements in games
hardware, and make AI agents appear as human-like
as possible so as to improve the game playing
experience.

To produce agents capable of this behaviour in
complex computer game environments we are using
the Belief-Desire-Intention (BDI) model of agency
(Bratman, 1987). In this model, agents are constructed
using humanistic concepts such as goals to achieve,

beliefs about the environment, and plans to achieve
goals. Using BDI, we can simulate the decision making
processes performed by humans, using the same
information available to humans, in order to make the
agent act in a human like way. It is expected that this will
make computer game characters appear more realistic,
and therefore, improve the experience of playing against
artificial game characters. The paper is constructed as
follows. In next section we outline the design of our
system for integrating a BDI reasoning engine into the
computer game Unreal Tournament, and detail the three
layers of the system including deliberation,
communication, and virtual environment. We follow this
with our experimental results, including the initial
implementation where agents interact with the game
environment, exploring, attacking enemies, producing
paths through the environment, following path, and
building health by locating health packs. We conclude
with our future aims, including the addition of a multi-
agent layer for common goals amongst agents.

SYSTEM DESIGN

Our framework, (Figure 1), is constructed using three
layers that integrate several tools available as open
source projects and commercial applications. The layers
are:

Intelligent Agent : Jadex
Game Environment : Unreal Tournament
Communication Layer : JavaBots/GameBots

Each layer is described in more detail below. It should be
noted that our implementation is client-server based, and
as such, requires an extra layer for external
communication with the game engine. This means the
agent is a combination of two separate entities. The first
entity is situated within the Unreal Tournament game,
and can be considered an avatar for our intelligent agent.
The intelligent agent guides the avatar by sending
commands over the network, and builds up a view of the
environment by receiving perception messages. There
are several reasons the system is implemented in this
way; not least is the desire to implement our system in a
modern commercial computer game. It is not possible to
incorporate our AI directly within the game due to
limitations in access to the engines source code.
However, this architecture has the benefit of forcing the

104

mailto:N.P.Davies2@wlv.ac.uk

agent to play the game in the same way as human
players; based on sensor information. In addition, this
type of architecture allows experimentation with
human / agent teams in an extensible framework, and
allows many agents to connect to the game server
simultaneously.

Figure 1: System Design

Intelligent Agent

The intelligent agent layer consists of a reasoning
system, a knowledge base of plans, and data structures
for storing environment information. The reasoning
system is developed using Jadex (Braubach et al,
2004). This is an agent platform that allows the
creation of BDI agents in the Java programming
environment i.e. it allows the creation of agents that
use the mental attitudes of belief, desire, and intention
to model human like reasoning processes. Agents are
created via the specification of beliefs, goals, plans,
events, and capabilities. Goals relate to the state an
agent would like to achieve and can be of several
types; achieve, maintenance, and perform. Achieve
goals are used to perform an action, such as move to a
waypoint. This type of goal can either succeed or fail.
Maintain goals are used to monitor the agent, e.g. make
sure health stays above 50. If the agent’s health drops
below this level, then some action is triggered to rectify
the situation. Perform goals are used to perform actions
that are consistent with a state that don’t have a target
state to reach e.g. ‘explore’ where an agent will
continue to search an environment until some other
event causes it to change behaviour. To accomplish
goals, relevant plans are used. Plans are created via
extending an abstract Plan class that allows messages
to be sent between plans and agents. Agents are
defined in an XML based Agent Definition File (ADF)
were beliefs, goals and plans are linked by specifying
their applicability via trigger statements. There may be
many plans applicable to specific goals, therefore the
plans applicability can be further reduced with
clarifiers such as context conditions, that state that
plans can only be created if certain belief conditions

are met. Beliefs specify agents’ knowledge of the world,
and are used to trigger goals, and plans success or failure.
Beliefs can be any Java object. In our system, we have
created belief objects that store the agent’s status, enemy
locations, navigation info etc. Using this system, we have
developed AI agents that have the ability to respond to
environmental events, identify appropriate plans to
handle the events, and execute those plans in a timely
manner. While executing plans, the agents monitor the
environment, and internal belief structures, in order to
ensure plans are still relevant, and identify new
opportunities.

PlansBDI Layer (Jadex)

Goals

Data
Structures

Beliefs

Network

Virtual Environment
(Unreal Tournament)

GameBots

Messages

Messages

Messages

Game
Agent

Coms Layer
(JavaBots)

Intelligent Agent

Virtual Environment

Our intelligent agent connects to a game environment,
and interacts with it through perceptions and performing
actions. We have chosen to develop our system using the
game engine Unreal Tournament, a three-dimensional,
networked FPS computer game. The game includes
several game types. These include Death Match; a free-
for-all match with the winner decided by the highest
number of frags achieved over a certain time period,
Domination; where players compete to capture and
defend domination points for a specified amount of time,
Capture the flag; where players have to retrieve the
opposition’s flag and bring it back to their base, while
defending their own flag and Team Death Match; where
teams work together to achieve the highest frag rate in a
set time period. The game can be modified in several
ways via an editor and a scripting language. New levels
can be created in the graphical designer Unreal Edit.
Game rules and physics can be modified via the scripting
language Unreal Script. Lewis and Jacobson (2002) point
out the benefits of this solution. The engine is
inexpensive. The graphics rendering capability is
superior to anything that can feasibly be created by small
research groups. Also, the game logic is fully
implemented i.e. the game comes complete with standard
functions such as collision detection, physics systems,
game maintenance etc. Other benefits include the large
user base of players of the game. This gives access to
domain experts for knowledge elicitation, and groups for
evaluation of the completed system. The use of a game
engine is not an ideal solution however. It would be
better to develop a complete computer game where all
functions are accessible at a source code level; a level
that is unavailable through the use of game engines.
Game engines impose limitations that are created by the
game engine developers, which can cause problems, but
is a neat solution to our requirements.
Communication Layer
To facilitate communication between the intelligent
agent and the game world we have adopted the use of the
dual middleware product of GameBots/JavaBots
(Marshall et al, 2006). GameBots is an extension to
Unreal Tournament that resides upon the game server. It
is written in the scripting language provided by the
Unreal developers; Unreal Script, and extends the basic
AI and networking components shipped with the game.

105

GameBots allows external processes to access internal
game AI functions through a network socket
connection via the exchange of messages. For every
game loop, agent perception data is sent as a
synchronous message packet across the network to a
JavaBots client. This information consists of currently
visible navigation points, inventory items, and other
visible agents. Status information is also sent including
the agent’s health, current location, current weapon etc.
Event messages, such collision information, damage
reports etc, are sent whenever they occur in the game
via asynchronous messages. The communication is a
two-way process, and GameBots also receives
messages from the JavaBots client that consist of
actions for the agent to perform. Actions include rotate,
walk, run, shoot etc, and also more complex operations
such as find path, which queries the navigation system
of Unreal Tournament, and sends a list of navigation
nodes back in the form of an asynchronous message.
The client portion used by the intelligent agent is called
JavaBots; a Java based system developed to connect to
GameBots. It is an extensible API that contains
example bots, visualisation applications, and a Bot
Runner application that allows agents to be connected
and visualised via a GUI interface. We have taken the
original JavaBots project and removed the extra
functionality to produce a very simple API that simply
listens for messages, and sends instructions back to
Unreal Tournament. We have removed the sample bots
and Bot Runner classes, and instead use functions
within Jadex to maintain the connection to the game.

Figure 2: Navigation messaging system

Figure 2 shows an example of the messaging system in
which GameBots sends a message block containing
navigation point information to the intelligent agent,
where it is recorded in a belief structure. In Unreal
Tournament, the game agent has a set view cone of
around 45 degrees. At any point in the game, the game
agent is capable of observing a discrete portion of the
game environment contained within this view cone,
which is not occluded by walls. Figure 3 shows a
typical Unreal Tournament view, the game agent can
see inventory items (Heath Packs), and waypoint
nodes. The waypoint nodes are either reachable, or

unreachable. In the illustration, there is a gap between
the game agent, and a platform containing the health
packs; it can therefore see them, but cannot reach them
directly. The navigation node to the right of the
illustration is visible and reachable directly. Therefore,
the agent can run directly to it. This information is
grouped into a single message block, and sent to the
intelligent BDI agent. The intelligent agent receives this
message, parses it, and populates its belief sets. New
nodes (nodes an agent has not seen before) are added to
the list of known nodes. Nodes at the position of the
agent are marked as ‘visited’ to indicate the agent has
explored the position. Two other data sets are populated;
visible nodes and reachable nodes. At each frame, these
sets are cleared, and populated with the new data
contained in the message i.e. only nodes that the agent
can currently see are stored.

Belief Set

Nodes not visible
Visible but not reachable nodes
Visible and reachable nodes

Explored Node
Unexplored Node
Path
Agent

Unreal Tournament

View Cone

Synchronous
Message

Figure 3: Navigation messaging system

EXPERIMENTAL RESULTS

A prototype application has been developed that shows
the potential of the architecture. The intelligent agents
are able to connect to Unreal Tournament, build a 3D
view of the environment, and navigate the world. The
agents are also capable of some basic behaviour in the
game. This includes exploring, navigating, hunting and
escaping. The overriding goal of the agent is to maintain
health above 50. Once health drops below this level, the
agent attempts to disengage from a combat situation, and
find health until its health has reached 90 or above. This
behaviour is achieved via a maintenance goal that
inhibits the ‘explore’ and ‘attack’ goals. When the agent
is attempting to build its health, it will observe the
environment to see if any health packs are currently
visible and reachable. If it can see a health pack, it will
move towards it and pick it up. If there are no visible
health packs, it checks its memory to recall the location
of the nearest health pack to its current location. At this
point, it queries Unreal Tournament to find a path to the
identified health pack from it current location, and then
follow this path. If, on route, it spots another health pack,
it will temporarily drop the goal of following the path in
favour of collecting the new health pack. It will then

106

resume the goal of following the path (assuming it still
requires health). If the agent encounters an enemy
agent while following the path, it will retreat, and
choose a path to an alternate health pack. Following
paths and collecting health behaviour is created using
achieving goals. At each stage of the goal, the agent
can either succeed or fail. If a section of the plan fails,
the agent is capable of retrying the goal, or dropping
the goal and starting again at any stage. If the agent
health is adequate, the agent will revert to the default
behaviour of exploring the environment. It will query
its belief set to find a list of reachable nodes, and check
if any of them have not been explored before. If it
finds an unexplored node, it will move towards it. If it
cannot see an unexplored node, it will run to a random
reachable node. This behaviour is created using a
perform goal, and the agent will continue with this
behaviour until some event causes it to drop the
behaviour. An example of a condition where the agent
will drop the goal is if the agent spots an enemy. When
an enemy is spotted, the agent will engage in an
attacking behaviour that includes firing its weapon,
running towards the enemy, and jumping left and right
until it has either killed the enemy, its health drops to a
point where the maintenance condition forces it to try
to escape, or it is killed. The behaviour of the agent is
presently for illustrative purposes, and is not intended
as a sophisticated behaviour system. However, it does
prove that developing a more complex agent is possible
with a combination of goals and plans within the BDI
framework.

CONCLUSIONS AND FUTURE WORK

It has been proposed that the goal based, deliberative
architecture, BDI, has the potential to produce more
human like behaviour in computer game characters that
will exhibit more realistic behaviour than can be
achieved with simple reactive AI techniques alone. We
have identified a set of tools, and implemented a
prototype application that incorporates the commercial
computer game Unreal Tournament, the reasoning
layer BDI through Jadex, and linked the systems using
the communication system GameBots/JavaBots. We
have created a set of agents that perceive their
environment via sensory information gathered from the
game, and use this information to build up a beliefs
base. Using these beliefs, and a set of desired
conditions, the agent uses its plan base to bring about
beneficial states of affairs. The implementation
currently allows the agent to explore the environment,
attack enemies, find health packs, and navigate the
game map by following a path list. In the next stage of
development, we will expand upon this basic bot, and
add more sophisticated behaviour and tactics. We will
also implement team based behaviours, which will
require agent negotiation techniques and social
abilities. In addition, we will expand upon the BDI
framework, and incorporate a layered architecture

where fast, reactive behaviour can be accomplished in
lower levels, and high level cooperative goals can be
accomplished at higher levels.

REFERENCES

Agent Oriented Software Pty. Ltd. JACK Intelligent
Agents. (2006) http://www.agent-software.com

Bratman, M. (1987) “Intention, Plans, and Practical
Reason” Harvard University Press: Cambridge,
USA

Braubach, L., Pokahr, A., Lamersdorf, W., Krempels, K.,
Woelk, P. (2004) “A Generic Simulation Service
for Distributed Multi-Agent Systems”, in: From
Agent Theory to Agent Implementation (AT2A1-
4) 2004

Epic Games Inc. Unreal Tournament.
http://www.unreal.com

Lewis, M., Jacobson, J., (2002), ‘Game Engines in
Scientific Research’, Communications of the
ACM, Volume 45, Issue 1. New York, USA

Marshall, A. N., Gamard, S., Kaminka, G. J.,
Manojlovich, Tejada S., Gamebots, viewed 10th
Mar 2006, http://planetunreal.com/gamebots/

Norling, E. (2004) ‘Folk psychology for human
modelling: extending the BDI paradigm’. In : Int.
Conf. on Autonomous Agents and Multi Agent
Systems (AAMAS), New York, 2004.

Rao, A., Georgeff, M., (1995) ‘BDI agents: from theory
to practice’ Tech. Rep. 56, Australian Artificial
Intelligence Institute, Melbourne, Australia

Russell, S., Norvig, P., Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, New
Jersey, 1995.

Sellars, W. (1956). ‘‘Empiricism and the Philosophy of
mind,’’ in H. Feigl & M. Scriven, eds., Minnesota
Studies in the Philosophy of Science, 1,
Minneapolis: University of Minnesota Press.

Stich, S. & Ravenscroft, I. (1994): "What is Folk
Psychology?". Cognition 50: 447-68

Valve Software (2004) Half Life 2, http://www.half-
life.com/

Valdes, R.: In the Mind of the Enemy: The Artificial
Intelligence of Halo 2 (2004):
http://stuffo.howstuffworks.com/halo2-ai.htm

Welsh, T., (2005) ‘A Typology of Givaways: An
Evaluation of FPS Bots’ in Proceedings of
CGAIMS’2005 6th International Conference on
Computer Games: Artificial Intelligence and
Mobile Systems 27-30 July 2005

AUTHOR BIOGRAPHIES

NICHOLAS P. DAVIES was born in Wolverhampton,
UK, where he studied Computer Science at the
University of Wolverhampton, and obtained a First Class
Degree in 2003. He is currently researching AI and
Computer Games, and has completed the first two years
of his PhD.

107

http://www.agent-software.com/
http://www.unreal.com/
http://planetunreal.com/gamebots/
http://www.half-life.com/
http://www.half-life.com/

